【时序列】时序列数据如何一步步分解成趋势(trend)季节性(seasonality)和误差(residual)- 理解python sm.tsa.seasonal_decompose
在做时序列分析的时候,好多教程都告诉你要把时序列分解成趋势,季节性,残差,然后画图看一下有没有趋势变化,有没有季节性。像这样:
import statsmodels.api as sm
decomposition = sm.tsa.seasonal_decompose(train['Count'] ,model='addictive', period=7)
decomposition.plot()
相信大家都很熟悉python的这个包和命令,但是具体是如何分解的却不是特别清楚。今天就来详细理解一下一个时序列是如何一步一