时间序列之平稳时间序列预测、趋势型序列预测、复合型序列预测

本文介绍了时间序列预测的关键,包括时间序列的成分:趋势、季节性、周期性和随机性。主要讨论了平稳序列的预测方法如简单平均法、移动平均法和指数平滑法,趋势型序列的线性与非线性预测,以及复合型序列的分解预测方法。这些方法对于理解和预测未来变化趋势具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间序列是同一现象在不同时间的相继观察值排列而成的序列。研究时间序列的主要目的之一就是进行预测,主要是根据已有的时间序列数据预测未来的变化。时间序列预测的关键是确定已有时间序列的变化模式,并假定这种模式会延续到未来(与马尔可夫预测模型对比)。

时间序列的成分有趋势、季节性、周期性、随机性。

  • 趋势是时间序列在长期内呈现出来的某种持续上升或者持续下降的变动。
  • 季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动。
  • 周期性也称循环波动,是时间序列中呈现出来的围绕长期趋势的一种波浪型或者震荡式变动。
  • 随机性也称不规则波动,是时间序列中除去趋势、周期性和季节性之后的偶然性波动。

时间序列可以分为平稳序列和非平稳序列两大类,平稳序列是基本上不存在趋势的序列。非平稳序列是包含趋势、季节性或周期性的序列,它可能只含有其中一种成分,也可能含有几种成分。

 平稳序列的预测

平稳时间序列通常只含有随机成分(时间序列成分不含趋势、周期性和季节性),其与预测方法主要有简单平均法、移动平均法和指数平滑法等,这些方法主要是通过对时间序列进行平滑以消除随机波动,因而也称为平滑法。

简单平均法

简单平均法利用已有t期观察值通过简单平均来与预测下一期数值,即用已有t期数值Y_{i},i=1,2,...t.的平均作为t+1期预测值F_{t+1}

F_{t+1}=\frac{1}{t}\sum_{i=1}^{t}Y_{i}

移动平均法

移动平均通过对时间序列逐期递移求得平均数作为预测值的一种预测方法,其方法有简单移动平均和加权移动平均。

  • 简单移动平均

简单移动平均将最近k期数据加以平均作为下一期预测值。设移动间隔为k(1<k<t+1),则t+1期移动平均值为,

### SARIMA-LSTM组合模预测实现方法 #### 构建SARIMA-LSTM混合模框架 为了提高时间序列预测性能,可以采用SARIMALSTM相结合的方式。这种混合策略能够充分利用两种算法的优势:SARIMA擅长处理线性周期性的数据模式;而LSTM则更善于捕捉复杂的非线性关系以及长期依赖特性。 对于给定的时间序列数据集,在应用此混合架构之前,通常会先通过差分操作使原始序列平稳化[^1]。接着分别训练两个独立组件——SARIMA用于提取季节趋势特征,LSTM负责学习残差中的潜在规律。最后将两者的结果相加以获得最终预测值。 #### Python代码示例 下面是一个简单的Python脚本片段来展示如何创建并训练这样一个复合型预测器: ```python import numpy as np from statsmodels.tsa.statespace.sarimax import SARIMAX from keras.models import Sequential from keras.layers import Dense, LSTM def build_sarima_lstm_model(train_data, test_data): # 训练SARIMA部分 sarima_order = (p,d,q) # 需要根据具体情况进行调整 seasonal_order=(P,D,Q,s) model_sarima = SARIMAX( train_data, order=sarima_order, seasonal_order=seasonal_order ) result_sarima = model_sarima.fit() residuals = train_data - result_sarima.predict() # 准备LSTM输入格式的数据 X_train, y_train = prepare_lstm_input(residuals) # 定义LSTM网络结构 lstm_model = Sequential([ LSTM(50, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2])), Dense(1) ]) lstm_model.compile(optimizer='adam', loss='mse') lstm_model.fit(X_train, y_train, epochs=200, batch_size=72, verbose=0) return result_sarima, lstm_model def predict_with_combined_models(sarima_result, lstm_model, new_observation): prediction_sarima = sarima_result.forecast(steps=len(new_observation)) residual_prediction = lstm_model.predict(prepare_lstm_input_for_forecasting(prediction_sarima)) final_predictions = prediction_sarima.values.flatten() + residual_prediction.flatten() return final_predictions ``` 上述代码展示了如何定义一个名为`build_sarima_lstm_model()` 的函数用来建立SARIMA-LSTM联合模,并提供了一个辅助函数 `predict_with_combined_models()` 来执行基于该模预测任务。注意这里的参数设置(如`sarima_order`, `seasonal_order`等)需依据实际应用场景下的探索分析结果来进行优化配置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值