AI虚拟主播数字人技术实现Wav2Lip【附完整版教程】及【效果评测】

本文详细介绍了AI虚拟主播技术的实现,特别是Wav2Lip算法,用于实现音频与视频中人物口型的同步。通过深度伪造技术,包括视觉和音频伪造,Wav2Lip能够生成与输入语音匹配的唇形同步视频。文章提供了一个完整的实践教程,包括环境配置、模型下载和运行步骤,以及效果评测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

实现效果

本篇是关于AI主播虚拟人的Wav2Lip技术实现与评测,后续还会有其他的相关技术实现与评测。本文主要实现图片说话(如下图的蒙娜丽莎)视频融合语音(这里的核心都是人物口型与音频中的语音唇形同步)。
主要通过将两个不相关的人的视频、音频,采用Wav2Lip技术,最终得到一个完整的视频文件,且视频的人物口型与音频内容一致。举例:小A的语音、加上小B的视频,融合为一个最终的视频;那么人小A在发出“啊”声音的时候,小B的嘴应该是张开的,以下是一张效果图),本文第五本部分是效果评测!

本文目录

第一部分:深度伪造技术概述

第二部分:Wav2lip技术概述

第三部分:使用Wav2Lip进行AI主播虚拟人的深度实践

第四部分:效果评测

第五部分:Wav2Lip完整版教程的下载

注:本案例涉及到所有内容,包括教程、图片、视频、Wav2Lip等均集中打包分享给大家,可自行复现

正文

第一部分:深度伪造技术概述

深度伪造一词译自英文“Deepfake”(“deep learning”和“fake”的组合)。它是一种利用机器学习的子领域——深度学习创建合成媒体的技术。

图来自作者


公众所熟知知道的一个常见用例是面部交换的应用。目标面孔被交换和合并,通常在第一眼看来是无缝的,以创建一个改变的事件。

图来自作者




在高层次上,Deepfake 可以根据媒体的关注点分为 3 个方向进行更改,即伪造视觉(例如伪造图片或者视频)、伪造音频(例如伪造语音内容等)、伪造视觉及音频(即前两者的结合了&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值