如何训练出来的
阿里云的“通义法睿”是一款专门针对法律行业的AI大模型产品,其训练过程涉及多个步骤和技术:
1. 基础模型选择:通义法睿是以“通义千问”为基础模型进行训练的。通义千问本身是一个强大的通用大模型,具备良好的自然语言处理能力,为通义法睿提供了坚实的基础.
2. 法律行业数据训练:在通义千问的基础上,通义法睿通过大量的法律行业数据进行专门训练。这些数据包括海量的法律文献、法规、判例等,涵盖了婚姻家事、民间借贷等多个法律领域。通过这些数据的训练,模型能够更好地理解和处理法律相关的文本和问题.
3. 模型精调:在基础训练完成后,还会对模型进行精调(Fine-tuning),以进一步提升其在法律领域的表现。精调过程中会针对特定的任务和场景进行优化,例如法律问答、文书生成、案情分析等,使模型在这些任务上更加精准和高效.
4. 强化学习:通义法睿还运用了强化学习技术,通过与用户的交互和反馈来不断优化模型的性能。在实际使用中,模型会根据用户的反馈进行自我调整和改进,从而更好地满足用户的需求.
5. RAG检索增强:RAG(Retrieval-Augmented Generation)是一种结合检索和生成的模型架构。通义法睿利用RAG检索增强技术,能够在回答法律问题或生成法律文书时,从海量的法律知识库中检索到相关的信息和案例,并结合这些信息生成更加准确和全面的答案.
6. 法律Agent及司法专属小模型:通义法睿还集成了法律Agent技术和司法专属小模型。法律Agent能够理解用户的法律需求并提供相应的服务,而司法专属小模型则针对特定的司法场景进行优化,使模型在处理这些场景时更加专业和高效.
通过以上多种技术和方法的综合运用,通义法睿能够具备强大的法律领域理解和推理能力,为用户提供法律咨询、文书生成、知识检索等全方位的法律服务。
使用说明
通义法睿是一款由阿里云推出的法律AI大模型产品,具备多种功能,包括法律问答、文书生成、合同审查等。以下是其主要功能和使用场景:
1. 法律问答:用户可以提出法律问题,通义法睿会根据法律规定和相关案例进行推理,生成答案。
2. 文书生成:根据用户提供的信息或上传的材料,生成起诉状、答辩状等法律文书。
3. 合同审查:上传合同文件后,通义法睿会根据预设的审查规则对合同进行分析,识别潜在的法律风险。
4. 案例检索:在裁判文书库中进行类案检索,帮助用户找到相似案例。
5. 法律法规检索:支持对法律法规的智能检索,帮助用户快速找到相关的法律条文。
API使用方式
通义法睿的API可以通过HTTP接口或SDK进行调用,以下是一些具体的使用方法:
HTTP接口调用
• 请求方法:POST
• 请求URL:https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation
• 请求头:
• Authorization: Bearer <API_KEY>
• Content-Type: application/json
• 请求体:
{
"model": "farui-plus",
"input": {
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "我哥欠我10000块钱,给我生成起诉书。"
}
]
},
"parameters": {
"result_format": "message"
}
}
SDK使用示例(Python)
from http import HTTPStatus
import dashscope
def call_with_messages():
messages = [{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': '我哥欠我10000块钱,给我生成起诉书。'}]
response = dashscope.Generation.call(
"farui-plus",
messages=messages,
result_format='message', # set the result to be "message" format.
)
if response.status_code == HTTPStatus.OK:
print(response)
else:
print('Request id: %s, Status code: %s, error code: %s, error message: %s' % (
response.request_id, response.status_code,
response.code, response.message
))
if __name__ == '__main__':
call_with_messages()
通过这些方法,用户可以将通义法睿集成到自己的业务系统中,实现自动化的法律服务。
是否用了RAG
通义法睿确实使用了RAG(Retrieval-Augmented Generation)检索增强技术。RAG是一种结合了检索和生成的模型架构,通过检索相关信息来增强生成文本的质量和准确性。在通义法睿中,这种技术被用于提高法律问题回答的准确性和相关性。
计费方式
通义法睿的费用和计费方式如下:
计费方式
• 按量后付费:通义法睿采用按量后付费的计费方式,即根据实际使用情况来计费。
计费单元及单价
• 合同审查:按页收费,每页4元。
• 法律咨询:按次收费,每次0.7元。
其他说明
• 合同审查:每页按照1000字左右计算。
• 费用发生条件:如果仅开通服务而未实际调用,不会产生费用,费用发生以实际调用为准。