【每日论文】Explorer: Scaling Exploration-driven Web Trajectory Synthesis for Multimodal Web Agents

下载PDF或查看论文,请点击:LlamaFactory - huggingface daily paper - 每日论文解读 | LlamaFactory | LlamaFactory

摘要

最近在大型多模态模型(LMMs)方面的成功,激发了能够自主完成复杂网络任务的智能体应用的巨大潜力。尽管开源的LMM智能体在离线评估基准测试中取得了显著进展,但它们在更现实的在线环境中的表现仍然与人类水平相去甚远。一个关键瓶颈是缺乏跨各个领域的大量且多样化的轨迹级数据集,这些数据集的收集成本高昂。在这篇论文中,我们通过开发一个可扩展的配方,合成迄今为止最大、最多样化的轨迹级数据集来解决这一挑战,该数据集包含超过94K个成功的多模态网络轨迹,涵盖了49K个独特的URL、720K个截图和3300万个网络元素。特别是,我们利用广泛的网络探索和优化来获取多样化的任务意图。平均成本为每条成功的轨迹28美分,这使得它对社区中的广大用户来说都是负担得起的。利用这个数据集,我们训练了Explorer,一个多模态网络智能体,并在Mind2Web-Live、Multimodal-Mind2Web和MiniWob++等离线和在线网络智能体基准测试中展示了强大的性能。此外,我们的实验突出了数据扩展作为提高网络智能体能力的关键驱动因素。我们希望这项研究能够使基于LMM的大规模智能体研究更加易于接近。

一句话总结

该论文提出了一种可扩展的Web轨迹数据合成方法,通过

### DeepSeek LLM 的长期扩展策略 开源语言模型(LLMs)的发展趋势表明,扩大模型规模可以显著提升性能。然而,随着参数量增加,计算资源消耗也呈指数级增长。为了实现可持续发展并推动技术进步,DeepSeek 采取了一系列基于长期主义的战略来扩展开源语言模型[^1]。 #### 资源效率优化 针对现有硬件条件下的资源利用最大化问题,团队专注于提高训练过程中的计算效率。具体措施包括但不限于: - **稀疏化处理**:通过引入结构化的权重矩阵,在不影响整体表现的前提下减少不必要的连接数量; - **量化方法应用**:采用低精度数值表示法降低内存占用和带宽需求; ```python import torch.nn as nn class SparseLinear(nn.Module): def __init__(self, in_features, out_features, sparsity=0.9): super(SparseLinear, self).__init__() self.linear = nn.Linear(in_features, out_features) mask = (torch.rand_like(self.linear.weight) > sparsity).float() self.register_buffer('mask', mask) def forward(self, x): masked_weight = self.linear.weight * self.mask return F.linear(x, masked_weight, self.linear.bias) ``` #### 社区共建生态体系 除了技术创新外,构建健康的社区环境对于促进高质量贡献至关重要。为此,DeepSeek 积极鼓励全球开发者参与进来,共同维护和发展这一开放平台。主要举措有: - 定期举办黑客松活动和技术分享会; - 提供详尽文档和支持渠道帮助新成员快速上手; - 设立奖励机制表彰优秀个人或团体的工作成果;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值