传统推荐模型

1.CF

1.1 UserCF和ItemCF

  • 原理:基于用户x物品的共现矩阵R,根据用户(行)和物品(列)相似度进行推荐
    具体原理步骤
    UserCF:选择topk个相似用户,计算所有物品的评分
    ItemCF:计算物品相似矩阵,根据用户的正反馈物品集和已有评分,计算所有物品的评分
  • 特点:UserCF社交性强,更适合推荐热点;ItemCF适用于兴趣变化较为稳定的应用,例如视频
  • 缺点:泛化能力差,处理稀疏矩阵能力差,推荐结构的头部效应明显

1.2 MF

  • 原理:R=UV,将共现矩阵分解为用户矩阵和物品矩阵,生成对应的隐向量
  • 方法:梯度下降
  • 优点:泛化能力强、空间复杂度低、更好的扩展性和灵活性
  • 缺点:不方便加入用户、物品和上下文特征

2. LR

  • 综合利用用户、物品、上下文多种不同特征,生成较为全面的推荐模型
  • 优点:数字含义上的支撑,可解释性强,工程化的需要
  • 缺点:模型不具备特征组合的能力,表达能力较差

2.1 特征交叉+LR

  • POLY2:(二阶)特征“暴力”组合,两两交叉, f ( w , x ) = ∑ j 1 = 1 n ∑ j 2 = j 1 + 1 n w j 1 , j 2 x j 1 x j 2 f(w,x)=\sum_{j_1=1}^n\sum_{j_2=j_1+1}^nw_{j_1,j_2}x_{j_1}x_{j2} f(w,x)=j1=1nj2=j1+1nwj1,j2xj1xj2
  • FM f ( w , x ) = ∑ j 1 = 1 n ∑ j 2 = j 1 + 1 n ( w j 1 ⋅ w j 2 ) x j 1 x j 2 f(w,x)=\sum_{j_1=1}^n\sum_{j_2=j_1+1}^n(w_{j_1}\cdot w_{j_2})x_{j_1}x_{j2} f(w,x)=j1=1nj2=j1+1n(wj1wj2)xj1xj2
  • FFM:每个特征对应不止一个隐向量, f ( w , x ) = ∑ j 1 = 1 n ∑ j 2 = j 1 + 1 n ( w j 1 , f 2 ⋅ w j 2 , f 1 ) x j 1 x j 2 f(w,x)=\sum_{j_1=1}^n\sum_{j_2=j_1+1}^n(w_{j_1,f_2}\cdot w_{j_2,f_1})x_{j_1}x_{j2} f(w,x)=j1=1nj2=j1+1n(wj1,f2wj2,f1)xj1xj2

2.2 GBDT+LR

  • 原理:GBDT自动进行特征选择和特征组合,拼接所有子树的特征向量(某一维为1,其他维为0)
  • 决策树的深度决定了特征交叉的深度,相比FM的特征交叉能力更强,但是丢失了大量特征的数值信息
  • 优点:特征工程模型化,模型能组合更高阶特征
  • 缺点:无法完全并行训练,训练时间长
  • 改进:XGBoost+LR,RF+LR

2.3 LS-PLM

  • 原理:先利用聚类对样本分片,在每个分片内部建LR,将样本的分片概率和LR得分加权平均
  • π \pi π=softmax多分类, η \eta η=CTR预估
    f ( x ) = ∑ i = 1 m π i ( x ) ⋅ η i ( x ) f(x)=\sum_{i=1}^{m} \pi_i(x)\cdot \eta_i(x) f(x)=i=1mπi(x)ηi(x)
    超参数m控制模型的泛化能力,阿里巴巴的经验值为12
  • 深度学习的角度:等价于一个加入Attention机制的3层网络,输入层是特征向量,中间层是m个神经元组成的隐层,隐层和输出层间分片函数确定注意力得分
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值