RT-DETR模型代码简析


在这里插入图片描述

RT-DETR(Real-Time Detection Transformer)是一种目标检测模型,具有高效、准确的特点,其详细介绍如下:

  1. 核心设计理念
    • 高效的混合编码器:设计了一个高效的混合编码器(Hybrid Encoder),它通过解耦尺度内特征交互(AIFI)和跨尺度特征融合(CCFM)来高效处理多尺度特征。这种设计能够在保持较高检测精度的同时,降低模型的计算复杂度,提高模型的运行速度。
    • IOU感知的查询选择:提出了IOU感知的查询选择机制(IOU-Aware Query Selection),用于优化解码器查询的初始化。该机制考虑了预测框与真实框之间的IOU信息,使得模型能够选择更优质的查询,从而提高检测的准确性,尤其是对于那些分类分数和IOU不一致的情况,该机制能够提供更高质量的解码器特征。
    • 灵活的推理速度调整:支持使用不同的解码器层来灵活调整推理速度,而不需要重新训练。这使得模型可以根据不同的硬件设备和应用场景,在保证一定检测精度的前提下,选择合适的推理速度,方便了模型的实际应用。
  2. 模型结构
    • Backbone:采用了经典的ResNet和百度自研的HGNet-V2两种骨干网络,并且骨干网络是可缩放的,有不同的版本以适应不同的需求。与其他DETR类检测器使用最后4个阶段输出不同,RT-DETR为了提速只使用最后3个阶段的输出,这也符合YOLO系列的风格特点。
    • Neck:即上述的混合编码器,相当于DETR中的编码器,类似于经典检测模型常用的FPN(Feature Pyramid Network)结构。通过对编码器的改进,减少了计算量的冗余,提高了特征提取的效率。
    • Transformer:名为RT-DETR Transformer,是基于Dino Transformer中的解码器改动而来,改动相对不大。
    • Head和Loss:与Dino Head基本一样,整个模型的颈部(Neck)、Transformer和检测头(Head)构成了一个完整的Transformer结构。
  3. 性能表现
    • 在速度方面,RT-DETR表现出色,例如RT-DETR-L在COCO val2017数据集上能够达到114FPS的速度,而RT-DETR-X则能达到74FPS的速度。
    • 在精度方面,RT-DETR也具有较高的检测精度,如RT-DETR-L在COCO val2017上实现了53.0%的AP(Average Precision),RT-DETR-X实现了54.8%的AP,在速度和精度的综合表现上优于相同规模的YOLO检测器。

总的来说,RT-DETR是一种创新的目标检测模型,在实时目标检测任务中具有很大的优势,为目标检测领域提供了一种新的思路和方法。

1.RT-DETR整体网络结构

在这里插入图片描述

2. backbone模块

backbone之一是对ResNet的魔改,命名为presnet,其主要修改包含两个方向:

  • 第一,把开始阶段的7x7卷积改为三组3x3卷积,通过调整步长使得输出shape与原来的7x7保持一致,这样可以更好地提取特征。
  • 第二,把resnetblock中1x1,步长为2的池化模块替换为步长为2的全局池化,然后1x1调整通道数,这样做的目的是原来的下采样方式会丢失信息,修改后更多地保留信息。
    在这里插入图片描述

3. encode模块

  • encode对应结构图中efficient hybrid encoder
    在这里插入图片描述
    在这里插入图片描述
  • AIFI编码器TransformerEncoderLayer
    在这里插入图片描述
  • CCFM可以认为就是个PAFPN。
    在这里插入图片描述
  • Fusion模块
    在这里插入图片描述

4. decode模块

  • decode部分比encode复杂很多,整合多种detr相关技术
    在这里插入图片描述
  • 解析get_decoder_input() : IOU-aware+decode输入,解决类别置信度与位置置信度表现不一样的问题.
    在这里插入图片描述
  • decoder模块模块来自Deformable DETR.
    – memory_mask: 哪写memory中的query是pading出来的.
    – score_head: ModuleList, 对每个docoder层输出进行类别预测
    – bbox_head: ModuleList, 对每个docoder层输出进行坐标预测
    在这里插入图片描述
  • 解析layer层主要模块Multi-scale Deformable-Attention
    在这里插入图片描述
### RT-DETR 模型介绍及应用 #### 一、RT-DETR 基础概述 RT-DETR 是一种基于 Transformer 架构的目标检测模型,其核心在于利用自注意力机制来增强对图像中复杂场景的理解能力。相比于传统的 YOLO 系列模型通过连续卷积层直接提取特征的方式,RT-DETR 更加注重全局上下文信息的学习,从而提升了在多对象环境下的检测性能[^1]。 该模型不仅具备较高的准确性,在实时性方面也有出色表现,适用于需要快速响应的应用场景。其实验结果显示,RT-DETR 已经能够在多个指标上超越经典的 YOLO 系列模型--- #### 二、RT-DETR 的技术特点 1. **Transformer 自注意力机制** RT-DETR 利用了 Transformer 中的自注意力机制,这种设计让模型可以更好地捕捉到图像中不同区域之间的关联性,尤其对于复杂的背景和密集的对象分布情况表现出更强的能力。 2. **高效实时处理优化** 尽管采用了较重的 Transformer 结构,但 RT-DETR 经过专门的优化后仍然能够满足实时需求,这得益于一系列轻量化改进措施以及硬件加速的支持。 3. **灵活性与扩展性** RT-DETR 支持多种训练方式,包括官方版本的标准训练流程以及与 YOLOv8 集成后的联合训练模式。这样的特性为开发者提供了更大的自由度去适配具体应用场景的需求。 --- #### 三、RT-DETR 的部署实践 为了实现 RT-DETR 在实际项目中的落地,通常会经历以下几个阶段: 1. 数据准备:收集并标注用于训练的数据集; 2. 环境搭建:安装必要的依赖库,并配置运行环境; 3. 模型训练:按照文档指导完成参数调整与迭代学习过程; 4. 推理测试:验证最终生成模型的效果是否达到预期标准; 5. 导出部署:将训练好的权重文件转换为目标平台可加载的形式(如 ONNX 或 TensorRT 格式),并通过编程接口调用执行预测操作[^2]。 以下是 C++ 实现的一个简单推理框架示例代码片段: ```cpp #include <detr_inference.h> int main() { DETRInference detr; std::string model_path = "rt_detr_model.onnx"; // 加载模型 if (!detr.loadModel(model_path)) { std::cerr << "Failed to load model!" << std::endl; return -1; } cv::Mat image = cv::imread("test_image.jpg"); if (image.empty()) { std::cerr << "Image not found or unable to read." << std::endl; return -1; } // 执行前向传播 auto results = detr.infer(image); // 输出结果 for (const auto& box : results.bounding_boxes) { std::cout << "Class ID: " << box.class_id << ", Confidence: " << box.confidence << ", BBox: (" << box.xmin << "," << box.ymin << ") -> (" << box.xmax << "," << box.ymax << ")" << std::endl; } } ``` 上述代码展示了如何加载预训练模型并对输入图片进行目标检测的过程。 --- #### 四、Mamba-YOLO 对 RT-DETR 的优化 最近的研究表明,结合 Mamba-YOLO 的设计理念可以进一步提升 RT-DETR 的性能。Mamba-YOLO 提出了 ODSSBlock 这样的新型组件,旨在改善传统目标检测器面对长距离依赖关系时的表现不足问题。通过对 RT-DETR 的改造形成新的混合架构——即所谓的 Mamba-RT-DETR-B ——可以在保留原有优点的基础上获得额外增益[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值