RT-DETR论文解读与代码

本文详细解读了RT-DETR论文,探讨了NMS对检测速度的影响,介绍了RT-DETR的混合编码器和IoU感知查询选择策略,以提升实时检测性能。并提供了PyTorch实现的解码器和编码器代码链接,适用于YOLO系列模型的后处理优化。
摘要由CSDN通过智能技术生成
RTdetr ecoder和decoder部分pytorch复现代码链接见文末
1.初始化策略与源码有所差异,使用过程中可以根据自己的需求进行更换!
2.代码经过一条一条的debug,本身没有bug,并且是依据作者源码用pytorch实现,但是在进行数据预处理时,需要保证每张图片标签不为空,否则会报错。如果您需要处理相关情况,需要自己思考策略。源码中作者没有考虑标签为空的情况。
3.本代码没有复现分割部分内容
4.代码中,后处理输出顺序进行了调整,您可以完美嵌入YOLO的代码中,进行map的计算

1.概述

        目前以大名鼎鼎的YOLO为代表的基于CNN的实时监测网络需要NMS进行后处理,导致不能很好的优化网络,并且网络不够健壮,从而导致检测器的推理速度出现延迟。研究者也分析了Anchor-based和Anchor-free的YOLO的性能,发现Anchor并不是影响实时监测的关键要素,而NMS后处理彩色。

        DETR很好的解决了后处理对于模型的限制,却受限于Transformer巨大的计算量,无法发挥实时监测性。

        因此,作者想要重构detr,使其具有实时性。研究者发现,虽然多尺度特征的引入有利于加速训练收敛和提高性能,但它也能显著增加输入编码器的序列的长度。因此,Transformer编

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
RT-DETR是一种用于图像目标检测和实例分割的深度学习模型。它的全称是Regression Transformer for Object Detection. 该模型的核心思想是将目标检测问题转化为一个回归问题,通过回归预测边界框的位置和类别,并使用Transformer网络进行信息的传递和整合。 RT-DETR代码实现在PyTorch框架下,对于训练集和测试集的准备过程较为复杂,首先需要将原始图片和标签转化为模型所需的格式。然后,需要构建数据集和数据加载器,以及相应的数据预处理和增强操作。 在模型部分,RT-DETR使用了一个Encoder-Decoder结构。Encoder部分使用ResNet-50作为特征提取器,它通过多个卷积层和池化层提取输入图片的特征图。Decoder部分则是一个由Transformer模块和全连接层组成的网络,用于生成目标的类别和位置信息。 模型的训练过程包括前向传播、损失计算和反向传播等步骤。在前向传播过程中,模型将输入图片送入Encoder和Decoder,得到目标的预测结果。损失计算部分主要使用了Hungarian匈牙利算法来计算预测框和真实框之间的IoU损失。然后,通过反向传播和优化算法更新模型参数,以减小预测结果和真实结果之间的差距。 在测试阶段,RT-DETR通过在输入图片上滑动一个固定大小的窗口,得到多个不同位置的预测结果。然后通过非极大值抑制(NMS)来去除冗余的预测框,最终输出检测到的目标。 总之,RT-DETR是一个基于Transformer网络的目标检测和实例分割模型。其代码实现中包括数据准备、模型构建和训练等步骤,通过回归和转换网络实现目标的类别和位置预测。该模型的训练和测试过程较为复杂,但具有较好的检测精度和鲁棒性。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值