本章内容
1.人脸检测,分别用Haar 和 dlib
目标:确定图片中人脸的位置,并画出矩形框
Haar Cascade 哈尔级联
- 核心原理
(1)使用Haar-like特征做检测
(2)Integral Image : 积分图加速特征计算
(3)AdaBoost : 选择关键特征,进行人脸和非人脸分类
(4)Cascade : 级联,弱分类器成为强分类器
论文:Rapid Object Detection using a Boosted Cascade of Simple Features
OpenCV 源码:https://github.com/opencv/opencv
参考博文:https://www.cnblogs.com/zyly/p/9410563.html
(1)使用Haar-like特征做检测
注意:特征值为白色矩形像素和减去黑色矩形像素和
3. Haar cascade
它提供了四个级联分类器(针对人脸的正面),他只能解决正脸检测的问题,后续课程能够解决侧脸和偏转角脸的检测:
(1)haarcascade_frontalface_alt.xml (FA1):
22 stages and 20 x 20 haar features
(2)haarcascade_frontalface_alt2.xml (FA2):
20 stages and 20 x 20 haar features
(3)haarcascade_frontalface_alt_tree.xml (FAT):
47 stages and 20 x 20 haar features
(4)haarcascade_frontalface_default.xml (FD):
25 stages and 24 x 24 haar features
实际项目效果图
haar的方式对侧脸很不友好,检测不出来
# 1.导入库
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 2.方法:显示图片
def show_image(image,title,pos):
#BRG to RGB
img_RGB = image[:,:,::-1]
plt.subplot(2,2,pos)
plt.title(title)
plt.imshow(img_RGB)
plt.axis("off")
# 3 方法:绘制图片中检测到的人脸
def plot_rectangle(image, faces):
# 拿到检测到的人脸数据,返回4个值:坐标(x,y), 宽高width, height
for (x, y, w, h) in faces:
cv2.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 3)
return image
# 4 主函数
def main():
# 5 读取一张图片
image = cv2.imread("../images/family.jpg")
# 6 转成灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 7 通过OpenCV自带的方法cv2.CascadeClassifier()加载级联分类器
face_alt2 = cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml")
# 8 通过第7步,对图像中的人脸进行检测
face_alt2_detect = face_alt2.detectMultiScale(gray)
# 9 绘制图片中检测到的人脸
face_alt2_result = plot_rectangle(image.copy(), face_alt2_detect)
# 10 创建画布
plt.figure(figsize=(9, 6))
plt.suptitle("Face detection with Haar Cascade", fontsize=14, fontweight="bold")
# 11 最终显示整个检测效果
show_image(face_alt2_result, "face_alt2", 1)
plt.show()
# 12 主程序入口
if __name__ == '__main__':
main()
2.dlib人脸检测
dlib的方式就好很多,但是在 win上安装dlib库比较费劲。
linux 下用conda是很好安装的:conda install -c conda-forge dlib
- Dlib是一个深度学习开源工具,基于C++开发,也支持Python开发接口。
- 由于Dlib对于人脸特征提取支持很好,有很多训练好的人脸特征提取模型供开发者使用,所以Dlib人脸识别开发很适合做人脸项目开发。
官网地址:http://dlib.net
Github 源码库:https://github.com/davisking/dlib
核心代码就是
# 6 调用dlib库中的检测器----核心代码
detector = dlib.get_frontal_face_detector()
dets_result = detector(gray,0) # 1 :代表将图片放大一倍,0 代表不放大也不缩小
print(dets_result)
结果是左上、右下的坐标对,一对坐标一张人脸
rectangles[[(830, 90) (1045, 305)], [(174, 194) (353, 373)], [(566, 194) (824, 452)]]
def main():
# 4读取一张图片
img = cv2.imread("family.jpg")
# 5灰度转换, 为什么需要灰度转换?省计算量。 什么情况下能够省计算量,色彩不敏感的情况下,灰度图就是把每一个像素点的R+G+B/3的平均值
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 6 调用dlib库中的检测器----核心代码
detector = dlib.get_frontal_face_detector()
dets_result = detector(gray,0) # 1 :代表将图片放大一倍,0 代表不放大也不缩小
print(dets_result)
# 7 给监测出的人脸绘制矩形框
img_result = plot_rectangle(img.copy(), dets_result)
# 8 创建画布
plt.figure(figsize=(9,6))
plt.suptitle("face detection with dlib", fontsize=14, fontweight="bold")
# 9 显示最终的检测效果
show_image(img_result, "face detection")
plt.show()
3. hog直方图
- HOG 方向梯度直方图(Histogram of Oriented Gradient)
(1)HOG是一种特征描述子,通常用于从图像数据中提取特征。它广泛用于计算机视觉任务的物体检测。
(2)特征描述子的作用:它是图像的简化表示,仅包含有关图像的最重要信息。
论文:《Histograms of Oriented Gradients for Human Detection》
地址:https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
4.关键点检测
意点:
- dlib.get_frontal_face_detector( ) 获取人脸检测器
- dlib.shape_predictor( ) 预测人脸关键点
人脸关键点模型,下载地址:
http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2.
5 face_recognition 基于face_recognition进行人脸关键点检测
- face_recognition 使用世界上最简单的人脸识别工具,它使用dlib最先进的人脸识别技术构建而成,并具有深度学习功能。
(1)Github 地址:https://github.com/ageitgey/face_recognition
(2)官方指南:
https://face-recognition.readthedocs.io/en/latest/readme.html
(3)源码实现:
https://face-recognition.readthedocs.io/en/latest/face_recognition.html
总结:
git 仓库:https://github.com/justinge/opencv_tutorial