多维Ellipse(椭球)形状与方程对应关系分析

一.多维Eliipse方程

(x-x_0)^T\Sigma(x-x_0)=\sum_{i,j}{(x_i-x_{0i)}\Sigma_{ij}(x_j-x_{0j})}=c \\\ \ \ \ \ where\ x,x_0\in \mathbb{R}^{n*1} \ and\ \Sigma\in\mathbb{R}^{n*n}\ \ \ c\in\mathbb{R}

二.正交左边系下的椭球形状分析

对于坐标中的椭球而言,中心,截距以及坐标中的方向唯一决定了一个椭球

2.1 特殊情况

\Sigma为对角矩阵时,方程变为\sum_{i}(x_i-x_{0i})^2\Sigma_{ii}=c

比对平面椭圆方程,可知上述方程对应的椭球是x_0为中心,以\frac{1}{\Sigma_{ii}}为各个基的截距的,方向不倾斜的椭球

2.2 一般情况

\Sigma不是对角矩阵时,椭球相对坐标基倾斜,此时的截距以及椭球方向需要做一些变换才能得到。

参考二维坐标下倾斜椭圆公式与变换,[参考]

我们发现,需要寻找一个旋转矩阵,将当前坐标系进行旋转,使得新的坐标系下\Sigma变成对角矩阵,由此就可以轻松的得到截距,方向也可以由旋转矩阵得到。

现在,我们假设旋转矩阵为A,这里要注意的是,我们只进行旋转而不进行坐标放缩,所以旋转矩阵是一个正交矩阵,有A^TA=I.

为了方便表述,我们令x_0=0

此时,有y=Ax\\ x^T \Sigma x=y^T\Lambda y =x^TA^T\Lambda Ax\\ so\ \ \Sigma=A^T\Lambda A \ \ where \ A^TA=I\\ so \ \ \Sigma A^T=A^T\Lambda

A^T的每一列都是\Sigma的特征向量,对应的对角线元素为特征值

至此,我们可以得到,一般情况下,椭圆方程对应的椭球是x_0为中心,以\Sigma的特征值的倒数为为各个基的截距的,以\Sigma的特征向量组成的矩阵为旋转方向的椭球!

进一步的,如果存在0特征值,则该维度的椭球截距无穷大,椭球退化

三,应用

1 多维高斯随机变量的等高线投影(相同马氏距离)为Eliipse,可由此直观可视化高斯概密。

2 多维线性回归问题,以平方差为损失函数时,损失函数等高线为Eliipse

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值