矩阵论杂记

前言

​   返校如火如荼,各地也有零星疫情肆虐。我又回来上班啦!~​  

有疫情在家过笑嘻嘻,不工作没房租惨兮兮!

​   由于在坐班,防止复习的过程中犯困,所以一边看一边记录,今天是一些矩阵论的笔记。


正文开始~

CSDN (゜-゜)つロ 干杯

线性空间与线性变换

  • 线性空间的性质(8条):

    • 加法交换律
    • 加法结合律
    • 存在零元
    • 存在负元
    • 数乘结合率
    • 存在1
    • 分配率(2种)

  • 过渡矩阵
    ( β 1 , β 2 , . . . , β n ) = ( α 1 , α 2 , . . . , α n ) C (\beta_1,\beta_2,..., \beta_n)=(\alpha_1,\alpha_2,..., \alpha_n)C (β1,β2,...,βn)=(α1,α2,...,αn)C
    其中C是可逆矩阵,记某个向量a在 β \beta β基下的坐标为Y,在 α \alpha α基下的坐标为X:
    即为: α = ( β 1 , β 2 , . . . , β n ) Y = ( α 1 , α 2 , . . . , α n ) X \alpha=(\beta_1,\beta_2,..., \beta_n)Y=(\alpha_1,\alpha_2,..., \alpha_n)X α=(β1,β2,...,βn)Y=(α1,α2,...,αn)X
    新旧坐标满足以下关系:
    X = C Y X=CY X=CY


  • 线性子空间
    满足线性运算封闭即可

  • 对于矩阵A,可以得到关于A的两个相关子空间
    零空间:N(A)={ x | Ax=0 } ∈ F n \in F^n Fn
    列空间(基的线性组合):R(A)=L{A1, A2, … , An} ∈ F n \in F^n Fn, A i A_i Ai为A的列向量


  • 交空间and和空间
    W 1 ⋂ W 2 = { α ∣ α ∈ W 1 , α ∈ W 2 } W_1 \bigcap W_2 = \{ \alpha | \alpha\in W_1, \alpha\in W_2 \} W1W2={ααW1,αW2}
    W 1 + W 2 = { α ∣ α 1 + α 2 , α 1 ∈ W 2 , α 2 ∈ W 2 } W_1 + W_2 = \{ \alpha | \alpha_1 + \alpha_2, \alpha_1\in W_2, \alpha_2 \in W_2 \} W1+W2={αα1+α2,α1W2,α2W2}

  • 维数公式
    d i m ( W 1 ) + d i m ( W 2 ) = d i m ( W 1 + W 2 ) + d i m ( W 1 ⋂ W 2 ) dim(W_1)+dim(W_2)=dim(W_1+W_2)+dim(W_1 \bigcap W_2) dim(W1)+dim(W2)=dim(W1+W2)+dim(W1W2)


  • 直和子空间
    记有 W = W 1 + W 2 W=W_1 + W_2 W=W1+W2, 若 W 1 ⋂ W 2 = { 0 } W_1 \bigcap W_2=\{ 0 \} W1W2={0} (注意这里是零元素,不是指数字0), 则记 W = W 1 ⨁ W 2 W=W_1 \bigoplus W_2 W=W1W2
    性质:
    • W中的元素都由W1和W2中元素相加且唯一的表达
    • 0向量的表达式唯一
    • d i m ( W ) = d i m ( W 1 ) + d i m ( W 2 ) dim(W)=dim(W_1)+dim(W_2) dim(W)=dim(W1)+dim(W2)

  • 内积空间

    • 性质:

      • 对称性: ( α , β ) = ( β , α ) ‾ (\alpha, \beta)=\overline{(\beta,\alpha)} (α,β)=(β,α)
      • 线性性:
        • ( k α , β ) = k ( α , β ) (k\alpha, \beta)=k(\alpha, \beta) (kα,β)=k(α,β)
        • ( α 1 + α 2 , β ) = ( α 1 , β ) + ( α 2 , β ) (\alpha_1+\alpha_2, \beta)=(\alpha_1, \beta)+(\alpha_2, \beta) (α1+α2,β)=(α1,β)+(α2,β)
      • 正定性: ( α , α ) ≥ 0 (\alpha,\alpha) \geq 0 (α,α)0, 等号成立的充要条件为 α = 0 \alpha=0 α=0
    • 向量长度
      ∣ ∣ α ∣ ∣ = ( α , α ) ||\alpha||=\sqrt{(\alpha,\alpha)} α=(α,α)

    • 柯西不等式

      • ∣ ( α , β ) ∣ 2 ≤ ( α , α ) ( β , β ) |(\alpha, \beta)|^2 \leq (\alpha,\alpha)(\beta,\beta) (α,β)2(α,α)(β,β)
      • ∣ ( α , β ) ∣ ≤ ∣ ∣ α ∣ ∣ ⋅ ∣ ∣ β ∣ ∣ |(\alpha, \beta)| \leq ||\alpha|| \cdot ||\beta|| (α,β)αβ
      • ∣ α + β ∣ ≤ ∣ ∣ α ∣ ∣ + ∣ ∣ β ∣ ∣ |\alpha+\beta| \leq ||\alpha|| +||\beta|| α+βα+β
    • 施密特正交化
      ( β 1 , β 2 , . . . , β n ) (\beta_1,\beta_2,..., \beta_n) (β1,β2,...,βn)化为标准正交基
      代码实现可以看这里
      过程:

      • β 1 = α 1 , ε 1 = β 1 ∣ ∣ β 1 ∣ ∣ \beta_1=\alpha_1, \varepsilon_1=\frac{\beta_1}{||\beta_1||} β1=α1,ε1=β1β1
      • β 2 = α 2 − ( α 2 , ε 1 ) ⋅ ε 1 , ε 2 = β 2 ∣ ∣ β 2 ∣ ∣ \beta_2=\alpha_2-(\alpha_2, \varepsilon_1) \cdot \varepsilon_1 , \varepsilon_2=\frac{\beta_2}{||\beta_2||} β2=α2(α2,ε1)ε1,ε2=β2β2
      • β n = α n − ∑ i = 1 n − 1 ( α n , ε i ) ⋅ ε i \beta_n=\alpha_n-\sum_{i=1}^{n-1} (\alpha_n, \varepsilon_i) \cdot \varepsilon_i βn=αni=1n1(αn,εi)εi

    • 线性变换

      • 在线性空间 V n ( F ) V_n(F) Vn(F)上定义一个映射到 V n ( F ) V_n(F) Vn(F)的变换T,满足线性运算:

        • T ( α + β ) = T ( α ) + T ( β ) T(\alpha+\beta)=T(\alpha)+T(\beta) T(α+β)=T(α)+T(β)
        • T ( k α ) = k T ( α ) T(k\alpha)=kT(\alpha) T(kα)=kT(α)
      • 线性变换不改变原来的线性相关性质

      • 线性变换的矩阵: T ( α 1 , α 2 , . . . , α n ) = ( α 1 , α 2 , . . . , α n ) A T(\alpha_1,\alpha_2,..., \alpha_n)=(\alpha_1,\alpha_2,..., \alpha_n)A T(α1,α2,...,αn)=(α1,α2,...,αn)A
        坐标关系:设 α \alpha α T ( α ) T(\alpha) T(α)在基 ( α 1 , α 2 , . . . , α n ) (\alpha_1,\alpha_2,..., \alpha_n) (α1,α2,...,αn)的坐标为X和Y,则有
        Y=AX

      • 不同基下线性变换的转换:
        ( α 1 , α 2 , . . . , α n ) (\alpha_1,\alpha_2,..., \alpha_n) (α1,α2,...,αn) ( β 1 , β 2 , . . . , β n ) (\beta_1,\beta_2,..., \beta_n) (β1,β2,...,βn)是Vn的两组基,且有
        ( β 1 , β 2 , . . . , β n ) = ( α 1 , α 2 , . . . , α n ) C (\beta_1,\beta_2,..., \beta_n)=(\alpha_1,\alpha_2,..., \alpha_n)C (β1,β2,...,βn)=(α1,α2,...,αn)C
        线性变换T在 α \alpha α基和 β \beta β基下的变换矩阵为A和B,则A和B的关系为:
        B = C − 1 A C B=C^{-1}AC B=C1AC,且C是可逆的,表明不同基下的变换矩阵是相似的。

  • 不变子空间和特征子空间

    • 不变: ∀ α ∈ W , T ( α ) ∈ W \forall \alpha \in W, T(\alpha) \in W αW,T(α)W
    • 特征: V λ ( A ) = { A ξ = λ ξ } V_{\lambda}(A)=\{ A \xi = \lambda \xi \} Vλ(A)={Aξ=λξ}
  • 正交变换
    性质:

    • 不改变向量内积: ( T ( α ) , T ( β ) ) = ( α , β ) (T(\alpha), T(\beta)) = (\alpha, \beta) (T(α),T(β))=(α,β)
    • 标准正交基经过T仍是标准正交基
      常见的正交变换矩阵:
      [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] \begin{bmatrix} \cos{\theta} & -\sin{\theta} \\ \sin{\theta}& \cos{\theta}\\ \end{bmatrix} [cosθsinθsinθcosθ]
      [ − 1 0 0 I n − 1 ] \begin{bmatrix} \pmb{-1} & 0 \\ 0& \pmb{I_{n-1}}\\ \end{bmatrix} [1−1100In1In1In1]
  • 线性变换矩阵的特征值和特征向量
    若存在线性变换T以及 ξ ∈ V n ( F ) \xi \in V_n(F) ξVn(F) λ ∈ F \lambda \in F λF满足 T ( ξ ) = λ ξ T(\xi)=\lambda \xi T(ξ)=λξ
    设T的线性变换矩阵在基 ( α 1 , α 2 , . . . , α n ) (\alpha_1,\alpha_2,..., \alpha_n) (α1,α2,...,αn)为A,则A的特征值就是T的特征值,若X是A的特征向量,则 ξ = ( α 1 , α 2 , . . . , α n ) X \xi=(\alpha_1,\alpha_2,..., \alpha_n)X ξ=(α1,α2,...,αn)X是T的特征向量。
    T的特征值由T决定,即在不同基下的变换矩阵的特征值相同

  • 线性变化矩阵的对角化
    充要条件:T有n个线性无关的特征向量,亦或是有n个互异的特征值

  • 幂等矩阵和乘方矩阵

    • 幂等矩阵:满足 A 2 = A A^2=A A2=A,相似于对角矩阵
      A ∼ [ I r 0 0 0 ] A \sim \begin{bmatrix} \pmb{I_r} & 0 \\ 0& \pmb{0}\\ \end{bmatrix} A[IrIrIr00000]
      • 乘方矩阵:满足 A 2 = I A^2=I A2=I, 相似于对角矩阵
        A ∼ [ I s 0 0 I t ]   ( s + t = n ) A \sim \begin{bmatrix} \pmb{I_s} & 0 \\ 0& \pmb{I_t}\\ \end{bmatrix} \, (s+t=n) A[IsIsIs00ItItIt](s+t=n)
  • Jordan 分解
    存在定理:任何方阵都相似于一个Jordan矩阵,存在可逆矩阵P: P − 1 A P = J P^{-1}AP=\pmb{J} P1AP=JJJ
    形如:
    [ λ 1 λ 1 . . . 1 λ ] \begin{bmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & ... & 1 \\ & & & \lambda\\ \end{bmatrix} λ1λ1...1λ

    Jordan分解的计算流程:

    1. 计算A的特征多项式, λ i \lambda_i λi为A的 k i k_i ki重特征值,每个互异特征值的代数重数决定了其对应Jordan矩阵 J i ( λ i ) J_i(\lambda_i) Ji(λi)的阶数
    2. 对于 λ i \lambda_i λi,求特征向量,其几何重数(即自由维度的个数)为该 J i ( λ i ) J_i(\lambda_i) Ji(λi)中的块数
    3. 如果几何重数等于代数重数,则 J i ( λ i ) J_i(\lambda_i) Ji(λi) k i k_i ki对角矩阵
    4. 如果几何重数小于代数重数,已计算出的特征向量记为 α i \alpha_i αi,则使用Jordan链求出广义特征向量,递归求解,直至方程不相容
      { ( A − λ 1 I ) α 1 = 0 ( A − λ 1 I ) β 2 = α 1 ( A − λ 1 I ) β 3 = β 2 . . . ( A − λ 1 I ) β n j = β n j − 1 \left\{ \begin{array}{c} (A-\lambda_1I)\alpha_1=0\\ (A-\lambda_1I)\beta_2=\alpha_1 \\ (A-\lambda_1I)\beta_3=\beta_2 \\ ... \\ (A-\lambda_1I)\beta_{n_j}=\beta_{n_j-1} \\ \end{array} \right. (Aλ1I)α1=0(Aλ1I)β2=α1(Aλ1I)β3=β2...(Aλ1I)βnj=βnj1
  • 最小多项式
    设A为n阶方阵,称矩阵 g ( A ) = a m A m + a m − 1 A m − 1 + . . . + a 1 A + a 0 I g(A)=a_mA^m+a_{m-1}A^{m-1}+...+a_1A_+a_0I g(A)=amAm+am1Am1+...+a1A+a0I为矩阵多项式

    • g(A)和A的一些相关性:
      λ 0 \lambda_0 λ0为A的特征值,则 g ( λ 0 ) g(\lambda_0) g(λ0) g ( A ) g(A) g(A)的特征值
      如A相似于B: P − 1 A P = B P^{-1}AP=B P1AP=B,则 g ( A ) g(A) g(A)相似于 g ( B ) g(B) g(B) P − 1 g ( A ) P = g ( B ) P^{-1}g(A)P=g(B) P1g(A)P=g(B)
      A和g(A)保持对角一致性

    • 通过以上性质,可以得到计算矩阵多项式的一种方法:

      • 设求得A的Jordan分解为 A = P J A P − 1 A=PJ_AP^{-1} A=PJAP1,则 g ( A ) = P g ( J A ) P − 1 g(A)=Pg(J_A)P^{-1} g(A)=Pg(JA)P1,即将计算 g ( A ) g(A) g(A)的问题转化为计算 g ( J A ) g(J_A) g(JA)的问题
      • 具体的 g ( J A ) g(J_A) g(JA)的求法可以简记为, J i ( λ i ) J_i(\lambda_i) Ji(λi)中对角线保持 g ( λ ) g(\lambda) g(λ),由下往上,对角线元素每向上一行则将 g ( λ ) g(\lambda) g(λ)求一次导,除上一个对应向上行数的阶乘。(详见《矩阵论》(杨明,刘先忠)Page(51))
  • 化零多项式
    可以证明得到方阵A的特征多项式即为A的化零多项式(化零多项式不唯一)

    • 最小多项式
      最小多项式的最高次项系数为1,且是次数最低的化零多项式,记为 m T ( λ ) m_{T}(\lambda) mT(λ)
      最小多项式中每一个因式的幂次均为对应 λ i \lambda_i λi的Jordan块的最高阶数
      可对角化的矩阵的最小多项式一定是各一次因式的乘积
    • 利用最小多项式法求高阶矩阵多项式 g ( A ) g(A) g(A)的步骤:
    1. 求A的特征多项式记为 ϕ ( A ) \phi(A) ϕ(A)
    2. 由于特征多项式是A的化零多项式,即 g ( λ ) = h ( λ ) ϕ ( ( λ ) + α ( λ ) g(\lambda)=h(\lambda)\phi((\lambda)+\alpha(\lambda) g(λ)=h(λ)ϕ((λ)+α(λ),其中 α ( λ ) \alpha(\lambda) α(λ)为阶数比 g ( A ) g(A) g(A)的未定多项式
    3. g ( λ ) = α ( λ ) g(\lambda)=\alpha(\lambda) g(λ)=α(λ),用待定系数法求 α ( λ ) \alpha(\lambda) α(λ)各未知系数
    4. g ( A ) = α ( A ) g(A)=\alpha(A) g(A)=α(A)

矩阵分解

  • LDV分解和LU分解

  • LU分解解线性方程组

  • 满秩分解

  • QR分解

  • 正规矩阵
    形如: A T A = A A T A^TA=AA^T ATA=AAT or A H A = A A H A^HA=AA^H AHA=AAH
    常见的正规矩阵:对角矩阵、对称矩阵、反对称矩阵、正交阵、酉阵
    性质:

    • 正规矩阵具有酉相似不变性,即 A H A = A A H A^HA=AA^H AHA=AAH,若 A ∼ B A\sim B AB,则 B H B = B B H B^HB=BB^H BHB=BBH
    • A是正规矩阵的充要条件:
    1. A酉相似于对角阵,即存在酉阵U,使得 U H A U = [ λ ] U^HAU=[\pmb{\lambda}] UHAU=[λλλ]
    2. A有n个线性无关的特征向量组成了空间的一组标准正交基
  • 奇异值分解 or SVD分解
    设有秩为r的矩阵 A m × n A_{m \times n} Am×n,酉矩阵 U m × m U_{m \times m} Um×m V n × n V_{n \times n} Vn×n,使得 A = U Σ V H A=U \Sigma V^H A=UΣVH Σ m × n = [ Δ 0 0 0 ] \Sigma_{m \times n}=\begin{bmatrix} \pmb{\Delta} & \pmb{0}\\ \pmb{0}& \pmb{0}\\ \end{bmatrix} Σm×n=[ΔΔΔ000000000],其中 Δ \Delta Δ是一个对角矩阵。

    计算步骤:

    1. 求正规矩阵 A H A A^HA AHA的特征值和特征向量,由正规矩阵性质,其特征向量相互正交,将特征向量标准化得到正交矩阵V
    2. 对于非零的奇异值 σ i = λ i \sigma_i=\sqrt{\lambda_i} σi=λi ,求 u i = 1 σ i A v i u_i=\frac{1}{\sigma_i}Av_i ui=σi1Avi, 若是u数量不足m,则去一个合适的正交向量扩展到 m × m m \times m m×m
    3. A = U Σ V H A=U \Sigma V^H A=UΣVH

矩阵广义逆

  • 左逆和右逆

  • 投影变换

    设有 C n = L ⨁ M C^n=L \bigoplus M Cn=LM,x=y+z, y ∈ L , z ∈ M y \in L, z\in M yL,zM,若有线性变换 σ ( x ) = y \sigma(x)=y σ(x)=y则称 σ ( x ) \sigma(x) σ(x) C n C^n Cn上从子空间M到子空间L的一个投影变换,在 C n C^n Cn空间的一组基下的矩阵称为投影矩阵

    子空间 L是投影变换 σ \sigma σ的像空间,子空间M是投影变换 σ \sigma σ的核(零)空间,此时 C n C^n Cn空间可以分解为: C n = R ( σ ) + N ( σ ) C^n=R(\sigma)+N(\sigma) Cn=R(σ)+N(σ)

    线性变换 σ \sigma σ是投影变换的充要条件是 σ \sigma σ是幂等变换。(证明详见《矩阵论》(杨明,刘先忠)Page(102))

    由投影变换的矩阵是幂等矩阵来求投影矩阵A:

    1. 设子空间L的维度为r,M的维度为n-r,分别取基底: { y 1 , y 2 , . . . , y r } , { z 1 , z 2 , . . . , z n − r } \{y_1,y_2,...,y_r\}, \{z_1,z_2,...,z_{n-r}\} {y1,y2,...,yr},{z1,z2,...,znr},则空间C的基底为 { y 1 , y 2 , . . . , y r , z 1 , z 2 , . . . , z n − r } \{y_1,y_2,...,y_r,z_1,z_2,...,z_{n-r}\} {y1,y2,...,yr,z1,z2,...,znr}
    2. 由投影变换的性质得: A y i = y i , ( i = 1 , 2 , . . . , r ) , A z j = 0 , ( j = 1 , 2 , . . . , n − r ) Ay_i=y_i,(i=1,2,...,r), Az_j=0, (j=1,2,...,n-r) Ayi=yi,(i=1,2,...,r),Azj=0,(j=1,2,...,nr)
    3. 作分块矩阵, B = ( y 1 , y 2 , . . . , y r ) , C = ( z 1 , z 2 , . . . , z n − r ) B=(y_1,y_2,...,y_r), C=(z_1,z_2,...,z_{n-r}) B=(y1,y2,...,yr),C=(z1,z2,...,znr),则有 A ( B ∣ C ) = ( B , 0 ) A(B|C)=(B,\pmb{0}) A(BC)=(B,000)
    4. (B|C)是可逆矩阵,则 A = ( B , 0 ) ( B ∣ C ) − 1 A=(B,\pmb{0})(B|C)^{-1} A=(B,000)(BC)1
  • 正交投影变换

    σ \sigma σ C n C^n Cn空间上的投影变换,且 C n = R ( σ ) ⨁ N ( σ ) C^n=R(\sigma) \bigoplus N(\sigma) Cn=R(σ)N(σ)。如果 R ( σ ) R(\sigma) R(σ)的正交补子空间满足 R ( σ ) ⊥ = N ( σ ) R(\sigma)^{\perp}=N(\sigma) R(σ)=N(σ)则称 σ ( x ) \sigma(x) σ(x) C n C^n Cn上一个正交投影变换,在 C n C^n Cn空间的一组基下的矩阵称为正交投影矩阵

    正交投影矩阵的性质为幂等的Hermite阵,即满足: A 2 = A , A H = A A^2=A,A^H=A A2=A,AH=A

    求正交投影矩阵的方法

    1. 设子空间 L L L的维度为r, L ⊥ L^{\perp} L的维度为n-r,分别取基底 { y 1 , y 2 , . . . , y r } , { z 1 , z 2 , . . . , z n − r } \{y_1,y_2,...,y_r\}, \{z_1,z_2,...,z_{n-r}\} {y1,y2,...,yr},{z1,z2,...,znr},则空间C的基底为 { y 1 , y 2 , . . . , y r , z 1 , z 2 , . . . , z n − r } \{y_1,y_2,...,y_r,z_1,z_2,...,z_{n-r}\} {y1,y2,...,yr,z1,z2,...,znr}
    2. 由正交投影矩阵定义得 B H C = 0 B^HC=0 BHC=0
    3. (B|C)是列满秩矩阵,存在左逆 ( B ∣ C ) L − 1 = ( ( B ∣ C ) H ( B ∣ C ) ) − 1 ( B ∣ C ) H (B|C)_L^{-1}=((B|C)^H(B|C))^{-1}(B|C)^H (BC)L1=((BC)H(BC))1(BC)H
    4. A = ( B , 0 ) ( B ∣ C ) − 1 = ( B ∣ C ) L − 1 = ( B , 0 ) ( ( B ∣ C ) H ( B ∣ C ) ) − 1 ( B ∣ C ) H = B ( B H B ) − 1 B H A=(B,\pmb{0})(B|C)^{-1}=(B|C)_L^{-1}=(B,\pmb{0})((B|C)^H(B|C))^{-1}(B|C)^H=B(B^HB)^{-1}B^H A=(B,000)(BC)1=(BC)L1=(B,000)((BC)H(BC))1(BC)H=B(BHB)1BH
  • 最佳最小二乘解

矩阵分析

  • 向量范数(老是打成向量番薯,人麻了)

    对于线性空间V上的任意一个向量,对应一个非负实数 ∣ ∣ x ∣ ∣ ||x|| x
    性质:正三齐

    1. 正定性: ∣ ∣ x ∣ ∣ ≥ 0 , ∣ ∣ x ∣ ∣ = 0 , 当 且 仅 当 x = 0 ||x|| \geq 0, ||x||=0,当且仅当 x=0 x0,x=0,x=0
    2. 齐次性: ∣ ∣ a x ∣ ∣ = ∣ a ∣ ⋅ ∣ ∣ x ∣ ∣ , a ∈ F ||ax||=|a| \cdot ||x||, a\in F ax=ax,aF
    3. 三角不等式: ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y|| \leq ||x||+||y|| x+yx+y
    • 向量2-范数
      x = ( x 1 , x 2 , . . . , x n ) T x=(x_1,x_2,...,x_n)^T x=(x1,x2,...,xn)T,则其L2范数为 ∣ ∣ x ∣ ∣ 2 = ∑ i = 0 n ∣ x i ∣ 2 = ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + . . . + ∣ x n ∣ 2 ||x||_2=\sqrt{\sum_{i=0}^n |x_i|^2}=\sqrt{|x_1|^2+|x_2|^2+...+|x_n|^2} x2=i=0nxi2 =x12+x22+...+xn2

    • 向量1-范数
      ∣ ∣ x ∣ ∣ 1 = ∑ i = 0 n ∣ x i ∣ ||x||_1=\sum_{i=0}^n |x_i| x1=i=0nxi

    • 向量 ∞ \infty -范数
      ∣ ∣ x ∣ ∣ ∞ = m a x ∣ x i ∣ ||x||_{\infty}=max |x_i| x=maxxi

    • 向量范数的连续性和等价性

    1. 向量范数是向量坐标的连续函数
    2. 有限维线性空间的任意两种向量范数等价
  • 矩阵(方阵)范数
    F n × n F^{n \times n} Fn×n上定义一个非负实值函数,对于任意一个矩阵 A ∈ F A \in F AF,对应一个非负函数 ∣ ∣ A ∣ ∣ ||A|| A
    性质:正三齐容

    1. 正三齐性质类同向量范数的性质
    2. 相容性:对于任意 A , B ∈ F n × n A,B \in F^{n \times n} A,BFn×n,都有 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ B ∣ ∣ ||AB|| \leq ||A|| \cdot ||B|| ABAB
    • F-范数
      ∣ ∣ A ∣ ∣ F = ( ∑ i = 1 n ∑ j = 1 n ∣ a i j ∣ 2 ) 1 2 = [ t r a c e ( A H A ) ] 1 2 ||A||_F=(\sum_{i=1}^n\sum_{j=1}^n|a_{ij}|^2)^{\frac{1}{2}}=[trace(A^HA)]^{\frac{1}{2}} AF=(i=1nj=1naij2)21=[trace(AHA)]21
      特别地, ∣ ∣ A ∣ ∣ F 2 = ∑ i = 0 n σ i 2 ||A||_F^2=\sum_{i=0}^n\sigma_i^2 AF2=i=0nσi2,其中 σ i \sigma_i σi A H A A^HA AHA的非零特征值。

    • 矩阵p范数

    1. ∣ ∣ A ∣ ∣ 1 : 最 大 列 和 ||A||_1: 最大列和 A1:
    2. ∣ ∣ A ∣ ∣ 2 : λ m      λ m 为 A H A 的 最 大 特 征 值 ||A||_2: \sqrt{\lambda_m} \,\,\,\, \lambda_m 为A^HA的最大特征值 A2:λm λmAHA
    3. ∣ ∣ A ∣ ∣ ∞ : 最 大 行 和 ||A||_{\infty}: 最大行和 A:
  • 矩阵幂级数

    • 谱半径: ρ ( A ) = m a x ∣ λ i ∣ , λ i 为 A 的 特 征 值 \rho(A)=max|\lambda_i|, \lambda_i为A的特征值 ρ(A)=maxλi,λiA
      谱半径为任何矩阵范数的下界,A的特征值定义在复平面上以原点为中心的, ρ ( A ) \rho(A) ρ(A)为半径的圆盘上。

      对于 A k A^k Ak,其收敛的充要条件为 ρ ( A ) < 1 \rho(A) \lt 1 ρ(A)<1

    • 矩阵幂级数: a 0 I + a 1 A + a 2 A 2 + . . . + a k A k + . . . a_0I+a_1A+a_2A^2+...+a_kA^k+... a0I+a1A+a2A2+...+akAk+...
      判断收敛性:

      1. ∑ a k A k \sum a_kA^k akAk的收敛半径为R
      2. ρ ( A ) < R \rho(A) \lt R ρ(A)<R,收敛
      3. ρ ( A ) > R \rho(A) \gt R ρ(A)>R,发散
      4. 由于 ρ ( A ) \rho(A) ρ(A)是矩阵范数的下界,所以可通过判断矩阵p范数来间接得到收敛性
  • 矩阵函数

    f ( z ) f(z) f(z)是解析函数, f ( z ) = ∑ k = 1 ∞ a k z k f(z)=\sum_{k=1}^{\infty}a_kz^k f(z)=k=1akzk的收敛半径为R,对于方阵A,其谱半径也小于R时(这里主要是使得矩阵函数有意义),则称 f ( A ) = ∑ k = 1 ∞ a k A k f(A)=\sum_{k=1}^{\infty}a_k A^k f(A)=k=1akAk为A的矩阵函数。
    常见的全复平面收敛的矩阵函数, e A , c o s A , s i n A e^A, cos{A}, sin{A} eA,cosA,sinA
    !!指数函数中满足 e a e b = e a + b e^a e^b= e^{a+b} eaeb=ea+b,但矩阵指数函数中一般不成立,当矩阵A和B可交换时,该性质成立: A B = B A → e A e B = e A + B AB=BA \rightarrow e^A e^B= e^{A+B} AB=BAeAeB=eA+B

  • 最小多项式求矩阵幂级数

    m λ ( A ) m_{\lambda}(A) mλ(A)为n阶矩阵A的最小多项式,次数为m,若 f ( λ ) f(\lambda) f(λ) k ( k ≥ m ) k(k \geq m) k(km)次多项式,则 f ( λ ) f(\lambda) f(λ)可表示为: f ( λ ) = m λ ( A ) q ( λ ) + r ( λ ) f(\lambda)=m_{\lambda}(A) q(\lambda)+ r(\lambda) f(λ)=mλ(A)q(λ)+r(λ),余式 r ( λ ) r(\lambda) r(λ)是0或者次数低于m的多项式。即任意次数大于m的矩阵多项式 f ( A ) f(A) f(A)都可以化为次数不大于m-1的A的多项式 r ( A ) r(A) r(A)

    计算步骤:

    1. 求出A的最小多项式 m λ ( A ) m_{\lambda}(A) mλ(A),阶数为m
    2. g ( λ ) = c 0 + c 1 λ + . . . + c m − 1 λ m − 1 g(\lambda)=c_0+c_1 \lambda + ... + c_{m-1}\lambda_{m-1} g(λ)=c0+c1λ+...+cm1λm1,为次数不超过m的多项式
    3. f ( A ) = g ( A ) f(A)=g(A) f(A)=g(A)的充要条件为: g ( j ) ( λ i ) = f ( j ) ( λ i ) g^{(j)}(\lambda_i)=f^{(j)}(\lambda_i) g(j)(λi)=f(j)(λi), i为特征值的个数,j为对应于某个特征值在最小多项式中的幂次。
    4. 利用待定系数法求 g ( λ ) g(\lambda) g(λ),结果均由 f ( j ) ( λ i ) f^{(j)}(\lambda_i) f(j)(λi)表示
    5. f ( A ) = c 0 I + c 1 A + . . . + c m − 1 A m − 1 f(A)=c_0 \pmb{I}+c_1 A+...+c_{m-1}A^{m-1} f(A)=c0III+c1A+...+cm1Am1
      实际计算例子可以参考(详见《矩阵论》(杨明,刘先忠)Page(129))

未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值