从头学计量-SPSS实操回归分析

本文深入探讨了一元回归、多元回归、二次项回归及分类变量回归的理论与实践,讲解了回归前的数据预处理技巧,如数据标准化和中心化,以及多元回归中的共线性诊断方法。同时,介绍了如何通过R方变化评估新增变量对模型的贡献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

 

一元回归分析

回归前可以先进行数据预处理

多元回归

二次项回归

分类变量回归(自变量为分类变量)


一元回归分析

 

回归前可以先进行数据预处理

数据的标准化不会影响实验的显著性

数据中心化 = 原始数据-均值

 

多元回归

共线性诊断:多元回归分析中的VIF<3或者5

新增变量对解释因变量的贡献程度看R方的变化,建议使用分层回归:在回归模型选择变量的时候点击下一个即可。

 

二次项回归

 

分类变量回归(自变量为分类变量)

分为基准组和比较组后进行回归。【不过最好使用方差分析】

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data_Designer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值