极大似然估计

贝叶斯决策

我们都知道经典的贝叶斯公式:
p ( w ∣ x ) = p ( x ∣ w ) p ( w ) p ( x ) p(w|x)=\frac{p(x|w)p(w)}{p(x)} p(wx)=p(x)p(xw)p(w)

  • x指事件,w指类别
  • p(w)为先验概率,表示每种类别分布的概率
  • p(x|w)为类条件概率,在某种类别的条件下,事件x发生的概率
  • p(w|x)为后验概率,表示事件x发生的情况下,类别是w的概率

举个例子理解下上面三个概念:
例子:夏天男性穿凉鞋的比例为1/2,女性穿拖鞋的比例为2/3,男女的比例2:1,如果遇到一个穿凉鞋的人,男性和女性的概率是多少?
假设男性为 w 1 w_1 w1,女性为 w 2 w_2 w2,穿凉鞋为x。根据贝叶斯公式, p ( w 1 ) = p ( x ∣ w 1 ) p ( w ) p ( x ) p(w_1)=\frac{p(x|w_1)p(w)}{p(x)} p(w1)=p(x)p(xw1)p(w)
我们要计算穿凉鞋发生的情况下,男性类别的概率,只需要再计算p(x)。p(x)包含两种情况,我们认为男性和女性穿凉鞋的概率是独立的。
p ( x ) = p ( x ∣ w 1 ) p ( w 1 ) + p ( x ∣ w 2 ) p ( w 2 ) = 1 / 2 ∗ 2 / 3 + 2 / 3 ∗ 1 / 3 = 5 / 9 p(x)=p(x|w_1)p(w_1)+p(x|w_2)p(w_2)=1/2*2/3+2/3*1/3=5/9 p(x)=p(xw1)p(w1)+p(xw2)p(w2)=1/22/3+2/31/3=5/9
则穿凉鞋的人是男性的概率 p ( w 1 ∣ x ) = p ( x ∣ w 1 ) p ( w ) p ( x ) = 1 / 2 ∗ 2 / 3 5 / 9 = 3 / 5 p(w_1|x)=\frac{p(x|w_1)p(w)}{p(x)}=\frac{1/2*2/3}{5/9}=3/5 p(w1x)=p(x)p(xw1)p(w)=5/91/22/3=3/5

上述情况是比较理想的,通常我们不知道先验概率和类条件概率。

  • 先验概率可以用训练样本中各类出现的频率估计。
  • 类条件概率的估计比较难,原因包括:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度 p ( x ∣ w i ) p(x|w_i) p(xwi)转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。

极大似然估计

最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。再明确些,就是根据已知的样本结果,求样本集的概率密度函数的参数
举个例子:有两个外形完全相同的箱子,甲箱子有99只白球,1只黑球;乙箱子有99只黑球,1只白球,一次实验从两个箱子取出一球,是黑球。问:黑球从哪个箱子取出?
我们第一印象,最像乙箱子取出的,这个最像就是最大似然之意,成为最大似然原理。
假设一个样本集D的样本独立同分布,可以通过 D = { x 1 , x 2 , x 3 , . . . , x N } D=\{x_1,x_2,x_3,...,x_N\} D={x1,x2,x3,...,xN}估计参数向量 θ \theta θ,使得似然函数最大。
似然函数为:联合概率密度函数 p ( D ∣ θ ) p(D|\theta) p(Dθ)
l ( θ ) = p ( D ∣ θ ) = p ( x 1 , x 2 , . . . , x N ∣ θ ) = ∏ i = 1 N p ( x i ∣ θ ) l(\theta)=p(D|\theta)=p(x_1,x_2,...,x_N|\theta)=\prod_{i=1}^Np(x_i|\theta) l(θ)=p(Dθ)=p(x1,x2,...,xNθ)=i=1Np(xiθ)

从上式可以看出联合概率密度函数=所有概率相乘,引出了极大似然估计的前提:

  • 训练样本的分布想要代表样本的真实分布:每个样本集中的样本都是独立同分布的随机变量 (iid条件),且有充分的训练样本。

似然函数还有两种形式,对于求解而言是等价的。
p ( x 1 , x 2 , . . . , x N ∣ θ ) = ∏ i = 1 n p ( x i ∣ θ ) n u m i l ( θ ) = ∏ i = 1 n p ( x i ∣ θ ) n u m i N p(x_1,x_2,...,x_N|\theta)=\prod_{i=1}^np(x_i|\theta)^{num_i}\\ l(\theta)=\prod_{i=1}^np(x_i|\theta)^{\frac{num_i}{N}} p(x1,x2,...,xNθ)=i=1np(xiθ)numil(θ)=i=1np(xiθ)Nnumi

如果向量 θ ^ \hat\theta θ^能使似然函数 l ( θ ) l(\theta) l(θ)最大,则 θ ^ \hat\theta θ^就是 θ \theta θ的极大参数估计量。它是样本集的函数记作
θ ^ = d ( x 1 , x 2 , . . . , x N ) = d ( D ) \hat\theta=d(x_1,x_2,...,x_N)=d(D) θ^=d(x1,x2,...,xN)=d(D)

求解极大似然函数

求使得出现该组样本的概率最大的 θ \theta θ
θ ^ = a r g m a x   l ( θ ) = a r g m a x   log ⁡ ( ∏ i = 1 N p ( x i ∣ θ ) ) = a r g m a x ∑ i = 1 N log ⁡ p ( x i ∣ θ ) \hat\theta=argmax\, l(\theta)=argmax\,\log{(\prod_{i=1}^Np(x_i|\theta))}=argmax\sum_{i=1}^{N}\log{p(x_i|\theta)} θ^=argmaxl(θ)=argmaxlog(i=1Np(xiθ))=argmaxi=1Nlogp(xiθ)
θ \theta θ是一个值,在似然函数满足连续,可微的正则条件下,极大似然估计量是 d l ( θ ) d θ = 0 \frac{dl(\theta)}{d\theta}=0 dθdl(θ)=0的解。
θ \theta θ是一个向量, θ = [ θ 1 , θ 2 , . . . , θ S ] T \theta=[\theta_1,\theta_2,...,\theta_S]^T θ=[θ1,θ2,...,θS]T.记梯度算子 ∇ θ = [ ∂ ∂ θ 1 , ∂ ∂ θ 2 , . . . , ∂ ∂ θ s ] T \nabla_\theta=[\frac{\partial}{\partial\theta_1},\frac{\partial}{\partial\theta_2},...,\frac{\partial}{\partial\theta_s}]^T θ=[θ1,θ2,...,θs]T
若似然函数满足连续可导的条件,则最大似然估计量就是 ∇ θ l n ( θ ) = 0 \nabla_\theta{ln(\theta)}=0 θln(θ)=0的解

方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。

完整例子充分理解

已知口袋中有10个球,球可能是白色或黑色。每次抽取一个球,记录颜色后放回口袋。
如果抽取10次,白球出现7次,黑球出现3次,问口袋里最有可能的白球总数量。

将抽球结果作为X,即离散随机变量,设白球为X=1,黑球为X=0 。假设抽到白球的概率为 θ \theta θ θ \theta θ 即是未知的需要通过极大似然估计得出的参数

写出似然函数: L ( θ ∣ x ) = P ( x , θ ) = θ x ∗ ( 1 − θ ) 1 − x L(\theta|x)=P(x,\theta)=\theta^x*(1-\theta)^{1-x} L(θx)=P(x,θ)=θx(1θ)1x 可知当捡到白球,概率密度函数为 θ \theta θ,捡到黑球,密度函数 1 − θ 1-\theta 1θ
对于10次有放回抽球可以认为是10次独立事件,其符合二项分布。
对于二项分布,出现符合观测情况的,白球出现7次,黑球出现三次的概率密度函数为
P ( X , θ ) = ∏ i = 1 10 P ( x , θ ) = P ( x 1 , θ ) ∗ P ( x 2 , θ ) ∗ . . . ∗ P ( x 10 , θ ) = θ 7 ∗ ( 1 − θ ) 3 P(X,\theta)=\prod_{i=1}^{10}P(x,\theta)=P(x_1,\theta)*P(x_2,\theta)*...*P(x_{10},\theta)=\theta^7*(1-\theta)^3 P(X,θ)=i=110P(x,θ)=P(x1,θ)P(x2,θ)...P(x10,θ)=θ7(1θ)3
写成似然函数形式
L ( θ ∣ X ) = P ( X , θ ) = θ 7 ∗ ( 1 − θ ) 3 L(\theta|X)=P(X,\theta)=\theta^7*(1-\theta)^3 L(θX)=P(X,θ)=θ7(1θ)3
求对数,求导:
d l n ( L ( θ ) ) / d θ = 7 / θ − 3 / ( 1 − θ ) dln(L(\theta))/d\theta=7/\theta-3/(1-\theta) dln(L(θ))/dθ=7/θ3/(1θ)
解得 θ \theta θ=0.7,似然函数取得最大值。因此我们认为白球占总数70%时,10次抽球最可能出现7次白球。

极大似然函数、最小二乘、交叉熵之间的联系

总结

求解极大似然估计量
  • 1.根据概率密度函数写出似然函数
  • 2.对似然函数取对数,整理
  • 3.求导数
  • 4.解似然方程
特点

最大似然估计的特点:

  • 1.比其他估计方法更加简单;
  • 2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;
  • 3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。

本文仅记录,未完待续…
极大似然估计详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值