XGBoost Algorithm

注:下有视频讲解,可供参考​​​​​​​

演变过程

1. CART

2. 集成学习

        集成学习(Ensemble Learning)通过构建并结合多个学习器来完成学习任务。 根据基学习器的生成方式,可以分为两大类:Bagging和Boosting。

Bagging Bagging

        每次从原始数据集中有放回的随机抽样n个样本形成自助训练集,重复S次后得到S个新的训练集。对每个自助训练集应用弱分类器,这样就得到了S个弱分类器。最后将预测数据放在这S个弱分类器上计算,计算结果采用投票方式(分类问题)和简单求平均(回归问题)即可。

        ◆ 代表方法:RF随机森林

Boosting Boosting

        先从初始训练集训练出一个基学习器;再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注;然后基于调整后的样本分布来训练下一个基学习器;如此重复进行,直至基学习器数目达到事先指定的值T;最终将这T个基学习器进行加权结合。

        ◆ 代表方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值