3.5. 马氏链-平稳测度(1)

1. 平稳测度和可逆测度

本节首先介绍平稳测度的定义及其示例, 然后给出可逆测度的定义, 并且说明可逆测度是平稳测度, 初始分布可逆的马氏链, 其对偶马氏链的转移概率和本身的转移概率相同(这也是可逆测度被称为可逆的原因).

1.1. 平稳测度

测度 μ \mu μ被称为平稳测度(stationary measure), 如果 P μ ( X 1 = y ) = μ ( y ) P_{\mu}\left(X_{1}=y\right)=\mu(y) Pμ(X1=y)=μ(y), 即
∑ x μ ( x ) p ( x , y ) = μ ( y ) \sum_{x} \mu(x) p(x, y)=\mu(y) xμ(x)p(x,y)=μ(y)
由马氏性和归纳法, 可得对所有 n ≥ 1 n \geq 1 n1, P μ ( X n = y ) = μ ( y ) P_{\mu}\left(X_{n}=y\right)=\mu(y) Pμ(Xn=y)=μ(y).

如果 μ \mu μ 是概率测度, 称 μ \mu μ是一个平稳分布(stationary distribution), 表示马氏链的一个可能的均衡. 即如果 X 0 X_{0} X0有分布 μ \mu μ, 则对所有 n ≥ 1 n \geq 1 n1, X n X_{n} Xn的分布也是 μ \mu μ.

示例 5.5.1 (d维整数空间上随机游走的平稳测度) 考虑d维整数空间上随机游走, 转移概率是
p ( x , y ) = f ( y − x ) p(x, y)=f(y-x) p(x,y)=f(yx)
其中 f ( z ) ≥ 0 f(z) \geq 0 f(z)0, 且 ∑ f ( z ) = 1 \sum f(z)=1 f(z)=1. 证明 μ ( x ) ≡ 1 \mu(x) \equiv 1 μ(x)1 是一个平稳测度(单点测度为1).

证明:满足 ∑ x p ( x , y ) = 1 \sum_{x} p(x, y)=1 xp(x,y)=1的转移概率被称为重随机 (doubly stochastic). 这是 μ ( x ) ≡ 1 \mu(x) \equiv 1 μ(x)1成为平稳测度的充要条件. 因为
∑ x μ ( x ) p ( x , y ) = ∑ x p ( x , y ) = ∑ x f ( y − x ) = 1 \sum_{x} \mu(x)p(x, y)=\sum_{x} p(x, y)=\sum_{x} f(y-x)=1 xμ(x)p(x,y)=xp(x,y)=xf(yx)=1

示例 5.5.2 (1维整数空间上对称简单随机游走的平稳测度). S = Z S=\mathrm{Z} S=Z. 转移概率为
p ( x , x + 1 ) = p p ( x , x − 1 ) = q = 1 − p p(x, x+1)=p \quad p(x, x-1)=q=1-p p(x,x+1)=pp(x,x1)=q=1p
μ ( x ) ≡ 1 \mu(x) \equiv 1 μ(x)1是一个平稳测度. 证明当 p ≠ q p \neq q p=q, μ ( x ) = ( p / q ) x \mu(x)=(p / q)^{x} μ(x)=(p/q)x是第二个平稳测度.

证明:为了验证 μ ( x ) = ( p / q ) x \mu(x)=(p / q)^{x} μ(x)=(p/q)x是一个平稳测度, 由于
∑ x μ ( x ) p ( x , y ) = μ ( y + 1 ) p ( y + 1 , y ) + μ ( y − 1 ) p ( y − 1 , y ) = ( p / q ) y + 1 q + ( p / q ) y − 1 p = ( p / q ) y [ p + q ] = ( p / q ) y \begin{aligned} \sum_{x} \mu(x) p(x, y) &=\mu(y+1) p(y+1, y)+\mu(y-1) p(y-1, y) \\ &=(p / q)^{y+1} q+(p / q)^{y-1} p=(p / q)^{y}[p+q]=(p / q)^{y} \end{aligned} xμ(x)p(x,y)=μ(y+1)p(y+1,y)+μ(y1)p(y1,y)=(p/q)y+1q+(p/q)y1p=(p/q)y[p+q]=(p/q)y

习题5.5.1. 扩散Bernoulli-Laplace模型(习题5.1.5)的平稳分布.

证明:由于 P j j = 2 j ( m − j ) m 2 P_{j j}= \frac{2j(m-j)}{m^{2}} Pjj=m22j(mj), P j , j + 1 = ( m − j m ) 2 P_{j, j+1}=\left(\frac{m-j}{m}\right)^{2} Pj,j+1=(mmj)2, P j , j − 1 = ( j m ) 2 P_{j, j-1}=\left(\frac{j}{m}\right)^{2} Pj,j1=(mj)2, 若 m ≠ j − 1 , j , j + 1 m \neq j-1, j, j+1 m=j1,j,j+1, P j , m = 0 P_{j, m}=0 Pj,m=0. 由平稳分布满足 π j = ∑ i π i P i j \pi_{j}=\sum_{i} \pi_{i} P_{i j} πj=iπiPij, 可得
π j = π j − 1 ( m − j + 1 m ) 2 + π j 2 j ( m − j ) m 2 + π j + 1 ( j + 1 m ) 2 \pi_{j}=\pi_{j-1}\left(\frac{m-j+1}{m}\right)^{2}+\pi_{j} \frac{2 j(m-j)}{m^{2}}+\pi_{j+1}\left(\frac{j+1}{m}\right)^{2} πj=πj1(mmj+1)2+πjm22j(mj)+πj+1(mj+1)2
由于 π 1 = m 2 π 0 \pi_{1}=m^{2} \pi_{0} π1=m2π0, 可以写作 π 1 = ( m 1 ) 2 π 0 \pi_{1}=\left(\begin{array}{l}m \\ 1\end{array}\right)^{2} \pi_{0} π1=(m1)2π0, 用归纳法可证
π j + 1 = ( m j + 1 ) 2 [ π j − π j − 1 ( m − j + 1 m ) 2 − π j 2 j ( m − j ) m 2 ] = ( m j + 1 ) 2 [ ( m j ) 2 − ( m j − 1 ) 2 ( m − j + 1 m ) 2 − ( m j ) 2 2 j ( m − j ) m 2 ] π 0 = ( m j + 1 ) 2 [ ( m j ) 2 − 1 m 2 ( m ! ( m − j ) ! ( j − 1 ) ! ) 2 − ( m j ) 2 2 j ( m − j ) m 2 ] π 0 = ( m j + 1 ) 2 ( m j ) 2 [ 1 − j 2 m 2 − 2 j ( m − j ) m 2 ] π 0 = ( m ! ( m − j ) ! ( j + 1 ) ! ) 2 ( m − j ) 2 π 0 ⟹ ( m j + 1 ) 2 π 0 \begin{aligned} \pi_{j+1}=&\left(\frac{m}{j+1}\right)^{2}\left[\pi_{j}-\pi_{j-1}\left(\frac{m-j+1}{m}\right)^{2}-\pi_{j} \frac{2 j(m-j)}{m^{2}}\right] \\ =&\left(\frac{m}{j+1}\right)^{2}\left[\left(\begin{array}{c} m \\ j \end{array}\right)^{2}-\left(\begin{array}{c} m \\ j-1 \end{array}\right)^{2}\left(\frac{m-j+1}{m}\right)^{2}-\left(\begin{array}{c} m \\ j \end{array}\right)^{2} \frac{2 j(m-j)}{m^{2}}\right] \pi_{0} \\ =&\left(\frac{m}{j+1}\right)^{2}\left[\left(\begin{array}{c} m \\ j \end{array}\right)^{2}-\frac{1}{m^{2}}\left(\frac{m !}{(m-j) !(j-1) !}\right)^{2}-\left(\begin{array}{c} m \\ j \end{array}\right)^{2} \frac{2 j(m-j)}{m^{2}}\right] \pi_{0} \\ =&\left(\frac{m}{j+1}\right)^{2}\left(\begin{array}{c} m \\ j \end{array}\right)^{2}\left[1-\frac{j^{2}}{m^{2}}-\frac{2 j(m-j)}{m^{2}}\right] \pi_{0} \\ =& \left(\frac{m !}{(m-j) !(j+1) !}\right)^{2}(m-j)^2 \pi_{0}\Longrightarrow \left(\begin{array}{c} m \\ j+1 \end{array}\right)^2\pi_{0} \end{aligned} πj+1=====(j+1m)2[πjπj1(mmj+1)2πjm22j(mj)](j+1m)2[(mj)2(mj1)2(mmj+1)2(mj)2m22j(mj)]π0(j+1m)2[(mj)2m21((mj)!(j1)!m!)2(mj)2m22j(mj)]π0(j+1m)2(mj)2[1m2j2m22j(mj)]π0((mj)!(j+1)!m!)2(mj)2π0(mj+1)2π0
由于 ∑ j π j = 1 \sum_{j} \pi_{j}=1 jπj=1, 可得
π 0 = [ ∑ j = 0 m ( m j ) 2 ] − 1 = ( 2 m m ) \pi_{0}=\left[\sum_{j=0}^{m}\left(\begin{array}{l} m \\ j \end{array}\right)^{2}\right]^{-1}=\left(\begin{array}{c} 2 m \\ m \end{array}\right) π0=[j=0m(mj)2]1=(2mm)
因此, 存在平稳分布 π j = ( m j ) ( 2 m m ) − 1 \pi_{j}=\left(\begin{array}{c}m \\ j\end{array}\right)\left(\begin{array}{c}2 m \\ m\end{array}\right)^{-1} πj=(mj)(2mm)1.

注释:如果马氏链在一次跳转中, 从 x x x移动到 y y y的量与从 y y y移动到 x x x的量完全相同, 称 μ \mu μ满足细致平衡条件, 即
μ ( x ) p ( x , y ) = μ ( y ) p ( y , x ) ( ∗ ) \mu(x) p(x, y)=\mu(y) p(y, x)\quad (*) μ(x)p(x,y)=μ(y)p(y,x)()

1.2. 可逆测度

满足(*)的测度 μ \mu μ被称为可逆测度(reversible measure). 可逆测度必定是平稳测度, 因为 ∑ x μ ( x ) p ( x , y ) = μ ( y ) \sum_{x} \mu(x) p(x, y)=\mu(y) xμ(x)p(x,y)=μ(y). 定理5.5.5解释"可逆"名称的来源, 即初始分布是可逆测度的马氏链, 其逆向马氏链的转移概率和该马氏链的转移概率相同.

示例 5.5.3 (Ehrenfest链的平稳测度) . S = { 0 , 1 , … , r } S=\{0,1, \ldots, r\} S={0,1,,r}.
p ( k , k + 1 ) = ( r − k ) / r p ( k , k − 1 ) = k / r p(k, k+1)=(r-k) / r \quad p(k, k-1)=k / r p(k,k+1)=(rk)/rp(k,k1)=k/r
此时, μ ( x ) = 2 − r ( r x ) \mu(x)=2^{-r}\left(\begin{array}{l}r \\ x\end{array}\right) μ(x)=2r(rx)是一个平稳测度.

证明:通过观察 μ \mu μ对应于翻转r个硬币,以确定每个球要放在哪个瓮中,而链的转换对应于随机挑选一枚硬币并将它翻过来.
μ ( k + 1 ) p ( k + 1 , k ) = 2 − r r ! ( k + 1 ) ! ( r − k − 1 ) ! ⋅ k + 1 r = ( r − 1 ) ! k ! ( r − k − 1 ) ! = 2 − r r ! k ! ( r − k ) ! ⋅ r − k r = μ ( k − 1 ) p ( k − 1 , k ) = μ ( k ) \begin{aligned} \mu(k+1) p(k+1, k) &=2^{-r} \frac{r !}{(k+1) !(r-k-1) !} \cdot \frac{k+1}{r}=\frac{(r-1) !}{k !(r-k-1) !} \\ &=2^{-r} \frac{r !}{k !(r-k) !} \cdot \frac{r-k}{r}=\mu(k-1) p(k-1, k)=\mu(k) \end{aligned} μ(k+1)p(k+1,k)=2r(k+1)!(rk1)!r!rk+1=k!(rk1)!(r1)!=2rk!(rk)!r!rrk=μ(k1)p(k1,k)=μ(k)

示例 5.5.4 (生死链的可逆测度) . S = { 0 , 1 , 2 , … } S=\{0,1,2, \ldots\} S={0,1,2,}
p ( x , x + 1 ) = p x p ( x , x ) = r x p ( x , x − 1 ) = q x p(x, x+1)=p_{x} \quad p(x, x)=r_{x} \quad p(x, x-1)=q_{x} p(x,x+1)=pxp(x,x)=rxp(x,x1)=qx
其中 q 0 = 0 q_{0}=0 q0=0, p ( i , j ) = 0 p(i, j)=0 p(i,j)=0. 存在测度
μ ( x ) = ∏ k = 1 x ( p k − 1 / q k ) \mu(x)=\prod_{k=1}^{x} ({p_{k-1}}/{q_{k}}) μ(x)=k=1x(pk1/qk)
满足细致平衡条件:
μ ( x ) p ( x , x + 1 ) = p x ∏ k = 1 x p k − 1 q k = μ ( x + 1 ) p ( x + 1 , x ) \mu(x) p(x, x+1)=p_{x} \prod_{k=1}^{x} \frac{p_{k-1}}{q_{k}}=\mu(x+1) p(x+1, x) μ(x)p(x,x+1)=pxk=1xqkpk1=μ(x+1)p(x+1,x)

定理5.5.5 (逆向马氏链的转移概率: 初始测度为平稳测度,可逆测度) μ \mu μ是一个平稳测度, 假设初始随机变量 X 0 X_{0} X0的 "分布"为 μ \mu μ. 则\
(i) Y m = X n − m , 0 ≤ m ≤ n Y_{m}=X_{n-m}, 0 \leq m \leq n Ym=Xnm,0mn 是一个有初始测度为 μ \mu μ, 转移概率为 q ( x , y ) = μ ( y ) p ( y , x ) / μ ( x ) q(x, y)=\mu(y) p(y, x) / \mu(x) q(x,y)=μ(y)p(y,x)/μ(x)的马氏链. q q q被称为对偶(dual)转移概率.\
(ii) 如果 μ \mu μ是一个可逆测度, 则 q = p q=p q=p.

注释
1. 初始分布平稳的马氏链, 其对偶马氏链的转移概率.\
2. 初始分布可逆的马氏链, 其对偶马氏链的转移概率和本身的转移概率相同.

P ( Y m + 1 = y ∣ Y m = x ) = P ( X n − m − 1 = y ∣ X n − m = x ) = P ( X n − m − 1 = y , X n − m = x ) P ( X n − m = x ) = P ( X n − m = x ∣ X n − m − 1 = y ) P ( X n − m − 1 = y ) P ( X n − m = x ) = μ ( y ) p ( y , x ) μ ( x ) \begin{aligned} P\left(Y_{m+1}=y \mid Y_{m}=x\right) &=P\left(X_{n-m-1}=y \mid X_{n-m}=x\right) \\ &=\frac{P\left(X_{n-m-1}=y, X_{n-m}=x\right)}{P\left(X_{n-m}=x\right)} \\ &=\frac{P\left(X_{n-m}=x \mid X_{n-m-1}=y\right) P\left(X_{n-m-1}=y\right)}{P\left(X_{n-m}=x\right)}\\ &=\frac{\mu(y) p(y, x)}{\mu(x)} \end{aligned} P(Ym+1=yYm=x)=P(Xnm1=yXnm=x)=P(Xnm=x)P(Xnm1=y,Xnm=x)=P(Xnm=x)P(Xnm=xXnm1=y)P(Xnm1=y)=μ(x)μ(y)p(y,x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小行星-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值