NLP语言模型平滑方法
更多内容 :https://github.com/fansking/NlpWithMe
在自然语言处理的模型中,我们需要输入一个句子,并给出这个句子出现的概率。我们通常会使用已有的语料库做先验概率统计,根据先验概率获得后验概率,但不幸的是,我们已有的语料库通常并不能覆盖所有的单词,当输入的句子中出现语料库中未曾包含的单词时,使用最大似然概率会导致这个句子出现的概率为0。这显然是不符合我们预期的,为了纠正这种错误,我们引入了平滑方法。
首先根据极大似然概率我们有以下公式:
P M L E ( w i ∣ w i − 1 ) = c ( w i − 1 , w i ) c ( w i ) P_{MLE}(w_i|w_{i-1})=\frac{c(w_{i-1},w_i)}{c(w_i)} PMLE(wi∣wi−1)=c(wi)c(wi−1,wi)
其中 w i w_i wi 指出现在第i个位置的单词。 c ( w i , . . . ) c(w_i,...) c(wi,...)指 w i . . . w_i... wi...单词序列出现的总次数
那么逐一介绍一些平滑方法
Add-one
Add-one认为所有的单词序列都至少出现过一次,所以在分子会加一,分母会加所有的单词序列的个数。
这里仅以bi-gram举例,下式中V是词库的大小,因为在给定 w i − 1 w_{i-1} wi−1的情况下,能出现的单词序列只有可能是词库所有单词遍历一遍也即 w i w_i w