Trace 功能实现 - 学习记录

一、学习 Trace 功能实现的目的

很多前沿的算法都不能正常的导出 onnx 用于部署,所以我们需要学习 Trace 功能用于自定义 onnx 的实现和导出。比如现在的SOTA point transformer v3 里面用到了稀疏卷积 spconv 库,或者经典的 centerpoint 就可以用这种方法导出 onnx。

或者还可以用来跟踪神经网络中某些层的输入和输出,这对于调试和优化神经网络非常有帮助。

二、hook_forward 函数

这里从一个简单的模型开始记录 hook_forward 的功能记录

代码 1:一个简单的 pytorch 模型的实现

import torch
import torch.nn as nn

class Model
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值