现实生活中,比如机器的台数,参与工作的人数,可调动的车辆数,这些数据都是整数。因此对于变量中包含整数、或者完全是整数的规划问题,我们称之为整数规划。在解决整数规划常用的算法便是单纯形法。
课题名称:任务的分配
设有甲、乙、丙、丁四个人,各有能力去完成A、B、C、D、E五项任务中的任一项,由于四个人的能力和经验不同,所需完成各项任务的时间如表1所示.由于任务数多于人数,要求考虑如下问题:
(1) 任务E必须完成,其他四项中可任选三项完成;
(2) 要求有一个人完成两项任务,其他人各完成一项;
(3) 要求任务A可由甲或丙完成,任务C可由丙或丁完成,任务E可由甲、乙或丁完成,且规定四个人中丙或丁能够完成两项任务,其他人完成一项任务。
试分别确定最优的分配方案,使得完成任务的总时间最少。
表1 每个人完成各项任务的能力
项目 人员 |
A |
B |
C |
D |
E |
甲 |
25 |
29 |
31 |
42 |
37 |
乙 |
39 |
38 |
26 |
20 |
33 |
丙 |
34 |
27 |
28 |
40 |
32 |
丁 |
24 |
42 |
36 |
23 |
45 |
由于任务数大于人数,所以需要有一个虚拟的人,设为戊。因为工作E必须完成,故设戊完成E的时间为M(M为非常大的数),即戊不能做工作E,其余的假想时间为0,建立的效率矩阵如表2:
表2 每个人完成各项任务的能力