线性规划 - 用单纯形法解决整数规划问题 - (Matlab、Lingo建模)

本文介绍了如何使用单纯形法解决整数规划问题,以任务分配为例,详细阐述了甲、乙、丙、丁四个人完成A、B、C、D、E五项任务的优化方案。通过Matlab和Lingo两种工具建模求解,得出最优分配策略,以最小化完成任务的总时间。最终得出的最优方案是甲完成B,乙完成D,丙完成E,丁完成A,总时间为105天。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现实生活中,比如机器的台数,参与工作的人数,可调动的车辆数,这些数据都是整数。因此对于变量中包含整数、或者完全是整数的规划问题,我们称之为整数规划。在解决整数规划常用的算法便是单纯形法。

课题名称:任务的分配

设有甲、乙、丙、丁四个人,各有能力去完成A、B、C、D、E五项任务中的任一项,由于四个人的能力和经验不同,所需完成各项任务的时间如表1所示.由于任务数多于人数,要求考虑如下问题:

(1)       任务E必须完成,其他四项中可任选三项完成;

(2)       要求有一个人完成两项任务,其他人各完成一项;

(3)       要求任务A可由甲或丙完成,任务C可由丙或丁完成,任务E可由甲、乙或丁完成,且规定四个人中丙或丁能够完成两项任务,其他人完成一项任务。

试分别确定最优的分配方案,使得完成任务的总时间最少。

表1   每个人完成各项任务的能力

项目

人员

A

B

C

D

E

25

29

31

42

37

39

38

26

20

33

34

27

28

40

32

24

42

36

23

45

    由于任务数大于人数,所以需要有一个虚拟的人,设为戊。因为工作E必须完成,故设戊完成E的时间为M(M为非常大的数),即戊不能做工作E,其余的假想时间为0,建立的效率矩阵如表2:

表2   每个人完成各项任务的能力

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值