Tensorflow2.x---Keras 保存 .pb 模型文件 和 加载

博客讲述了在OpenVINO不支持Keras .h5模型的情况下,如何直接从训练阶段生成Tensorflow .pb模型,避免转换过程中的麻烦。作者提供了训练保存和加载Tensorflow模型的代码示例,并分享了使用.h5模型直接转换为.pb模型的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为 OpenVINO  不支持 Keras 的  .h5  模型啊!!! .h5 模型转  .pb  又挺麻烦,各种报错,最后还不一定能加载成功。

那就从根源解决问题,训练直接生成  .pb  吧。

checkpointer = ModelCheckpoint(filepath='gesture_ceshi_Reset50_model.h5', /
                                 monitor='val_accuracy', verbose=1, /
                                 save_best_only=True, mode='max')
r50_finetune.save('model.h5')
# r50_finetune 是自己构建的 model

上面第一个是在 checkpointer 中定义模型保存名称。第二种是训练结束后保存模型。

tf.keras.models.save_model(r50_finetune,"model_save_path")
#  r50_finetune  是自己构建的  model

此种方式会在训练结束后,生成一个  model_save_path  的文件夹。里面包含了 Tensorflow  样式的 模型,其中包含  .bp  模型文件。

加载时也是方便的,跟  .h5  一样的加载方式,如下所示:

model = tensorflow.keras.models.load_model('gesture_best_Reset50_model.h5')
#  加载 .h5 模型文件
model = tensorflow.keras.models.load_model('model_save_path')
#  加载  Tensorflow  格式的 模型文件

加载 Tensorflow 格式的模型文件,只需要加载训练时保存的文件夹就OK

其实,不想训练的可以直接拿  .h5  模型转 .pb 模型,如下所示:哈哈哈哈哈哈

model_path = "keras_model.h5"
model = tf.keras.models.load_model(model_path)
model.save("tfmodel_save", save_format = "tf")

Good  Bye ~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值