复数,通往真理的最短路径

马同学高等数学

在实数域中,连接两个真理的最短的路径是通过复数域

----雅克·阿达马

现代数学家对复数的看法如斯,无限拔高了复数的地位,这样说有道理吗?

1 对于复数的普通认知

我想,对于复数,或许大家一般会有以下的认知吧。

1.1 应付考试

高中的时候,会粗略地学习下复数,首先定义:

i=\sqrt{-1}

然后形如:

a+bi\qquad\left(a,b\in\mathbb{R}\right)

这样的数就是复数。有了复数之后,开方运算就不再局限于大于0的数了,这样高中必考的一元二次方程:

ax^{2}+bx+c=0\qquad\left(a\neq 0\right)

就总是有解了:

x={\frac {-b\pm {\sqrt {b^{2}-4ac\ }}}{2a}}

书上还会给出一些复数的运算法则,这样高考命题组就可以出题了。最后留给同学们的印象,似乎复数就是一个类似于太阳能电筒(不带蓄电池)一样,属于智力过剩的产物,是数学家的玩具。

1.2 数系完善

增加负数,可以使得减法任意进行。而有了i=\sqrt{-1} 之后,开根号运算就可以随意了,比如:

\sqrt{-4}=2i

对数运算也可以操作负数了,比如(下面用到欧拉公式,可以参考这里):

\ln\left(-5\right)=\ln\left(5e^{i\pi}\right)=\ln 5 + \ln e^{i\pi}=\ln 5+i\pi

这样,基本上就只有:

  • 除以0

  • \log(0)

这两个运算没有办法执行了。不过大家思考过没有,完善数系真的那么重要呢?如果非常重要的话,为什么不能发明一个数系能够使得“除以0 ”可以进行下去?

你别说,史上有非常多的数学家想去发明能够兼容“除以0 ”的数系,可惜都失败了,因为没有办法自洽。比如说,某个数系兼容“除以0 ”,那么很容易得到荒谬的结论:

\begin{aligned}     0=0\implies 2\cdot 0=1\cdot 0\implies \frac{2\cdot 0}{0}=\frac{1\cdot 0}{0}\implies 2=1 \end{aligned}

你说这种扩展数系的方法不对,换种别的扩展方式或许就能自洽。但是数学家试过各种扩展方式,都没有办法自洽。

深想一步,尝试了无数种方法都没有发明出兼容“除以0 ”的数系,是否意味着不存在这样的数系。就好比,尝试了无数种永动机,下面是其中之一:

这些永动机最后都被证伪,实际上“永动机”这个目标就是错误的(1775年法国科学院通过决议,宣布永不接受永动机。现在美国专利及商标局严禁将专利证书授予永动机类申请。据说现在有什么时间晶体,不了解就不发言)。

再深想一步,为什么扩展i=\sqrt{-1} 就那么容易呢?没有遇到自洽的问题呢?这是因为当人们抽象出“1+1=2”的时候,复数就根植于逻辑之上、存在于数学之中,静静地等待着人们的发现。

2 二维的数

假设有一个生活在二维空间中的纸片人:

突然发现有一个黑点在草地上忽大忽小的闪烁,纸片人完全不知道怎么去解释:

如果切换到三维视角去的话,问题就很简单了,原来是一个三维的球体穿过二维平面:

上面动画的出处是这里

实数是一维的数,既生活在一维的实数轴上,又困囿其上:

而复数生活在二维复平面,拥有更大的自由度:

类比刚才的动画,你就会明白为什么复数域更加重要,也不可或缺,因为它带给我们更广阔的视野。在复数域中解决一些问题会更加简单、更接近本质。

让我们带着这个模型重新审视下复数的发现历史,进一步去理解复数。

3 复数的历史

3.1 纸片人卡尔达诺

意大利数学家,吉罗拉莫·卡尔达诺(1501-1576),在它的著作《大术》中(这本书首次记载了一元三次方程的完整解法)提到这个一个问题,能否把10分成两部分,使它们的乘积为40?

他给出一个答案,令:

a=5+\sqrt{-15}\quad b=5-\sqrt{-15}

这样就满足题目的要求:

a+b=10\quad a\cdot b=40

不过他自己也认为这不过就是一个数学游戏,虽然出现了虚数,但是“既不可捉摸又没有什么用处”。

此时的卡尔达诺就好像之前的纸片人,虽然想到了虚数,触摸到了更高的维度,但是终究还是把它看成一种幻想。

之后的笛卡尔把i=\sqrt{-1} 称为虚数,也就是虚幻的、想像出来的数;莱布尼兹描述它为“介乎于存在与不存在之间的两栖数”。

确实,纸片人要跳出自己的维度去想问题是非常困难的。

3.2 邦贝利的思维飞跃

拉斐尔·邦贝利(1526-1572),文艺复兴时期欧洲著名的工程师,同时也是一个卓越的数学家,其出版于1572年的《代数学》一书讨论了负数的平方根(虚数):

正是这本书产生了一个思维飞跃,下面用现代语言来介绍一下。

3.2.1 一元二次方程

首先,标准的一元二次方程:

ax^{2}+bx+c=0\qquad\left(a\neq 0\right)

它的解为:

x={\frac {-b\pm {\sqrt {b^{2}-4ac\ }}}{2a}}

从几何上看,解就是ax^{2}+bx+c 与x=0 的交点。当b^{2}-4ac > 0 时,ax^{2}+bx+c 与y=0 有两个交点,也就是有两个根x_1 、x_2 :

b^{2}-4ac < 0 ,此时ax^{2}+bx+c 与y=0 不相交:

也就是说,不引入虚数(因为b^{2}-4ac < 0 ,如果根据公式求解的话,就会引入虚数),是不会产生任何问题的。本来从几何上看,此时方程就不应该有解。

3.2.2 一元三次方程

形如:

x^3-3px-2q=0

的三次方程,卡尔丹诺在《大术》这本书中给出了通解:

x=\sqrt[3]{q+\sqrt{q^2-p^3}}+\sqrt[3]{q-\sqrt{q^2-p^3}}

如果p=5 ,q=2 ,可以得到方程:

x^3-15x-4=0

从图像上看,x^3-15x-4 与y=0 有三个交点的:

套用通解会得到:

x=\sqrt[3]{2+\sqrt{2^2-5^3}}+\sqrt[3]{2-\sqrt{2^2-5^3}}=\sqrt[3]{2+11i}+\sqrt[3]{2-11i}

邦贝利指出:从几何上看是有解的,但是必须通过虚数来求解!

邦贝利大胆地定义了复数的乘法(就是多项式乘法的合理延伸):

(a+bi)(c+di)=ac+(ad+bc)i+bdi^2

最终通过复数以及复数乘法,邦贝利解出了此方程的三个实数解(这里不过多解释了,这不是本文的重点)。

这是一个巨大的思维飞跃,就好像刚才的纸片小人,困惑于“为什么有一个黑点在草地上忽大忽小的闪烁”?最终发现,需要通过更高纬度才能真正解决这个问题。

邦贝利通过更高维度的复平面,解决了低维度的实数问题,真正的把复数带入了人们的视野。所以他被认为是复数的发现者。

3.3 傅立叶变换

复数进入纸片人的视野,大家花了很长的时间才真正接受它。接受它之后发现了非常多的应用,比如傅立叶变换。

还是回到之前纸片人的动画,对于纸片人,它只有上下左右的观念:

而三维空间的人却可以看到更多的方向、更多的内容:

傅立叶变换也可以说是同样的思路,f(x) 是低维度的函数:

f(x) 进行傅立叶变换:

F(\omega )=\frac{1}{2\pi }\int _{-\infty }^\infty f(x)\ e^{-i\omega x}\, \mathrm{d}x

抛开其它细节不谈,最重要的是f(x)\ e^{-i\omega x} ,乘以一个复数,就把f(x) 拖到更高维度的空间去审视,从而可以得到更多的细节,比如频域。

关于傅立叶变换,我们也写过很多的文章,感兴趣可以去看看:

4 更高维度的数

自然会有这么一个问题,是否有更高维度的数?答案是有的,比如四元数。

威廉·哈密顿爵士(1805-1865)发现了四元数:

a+bi+cj+dk

其中i 、j 、k 就是对虚数维度的扩展。为此还成立了四元数推广委员会,提议学校像实数一样教授四元数。

四元数刚开始的时候引起了很大的争议,计算很复杂,但是用处不明显。用处不明显的原因或许是,当时面临的问题还不够复杂,还用不到比复数还高的维度。

到了现代,终于在电脑动画中、量子物理中找到了四元数更多的应用,只是这些应用对普通人距离太远了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值