大模型外推能力

一、目录

  1. 定义
  2. 如何提高模型的外推能力?
  3. 分类
  4. 测评方法
  5. 各技术点,以及应用模型,优缺点
  6. 支持模型长上下文的方案「NTK-aware interpolation」的思路是什么?
  7. LLM长度外推方案NTK-by-parts的思路是什么?
  8. LLM长度外推方案YaRN是怎做的?

二、实现

  1. 定义:什么是长度外推性?
    长度外推性=短文本训练,长文本预测

  2. 如何提高模型的外推能力?
    寻找或设计合适的位置编码(典型如RoPE);
    设计局部注意力机制(局部attention)。

  3. 分类
    一类是事后修改,这类方法的特点是直接修改推理模型,无需微调就能达到一定的长度外推效果,但缺点是它们都无法保持模型在训练长度内的恒等性;
    比如NTK-RoPE、YaRN、ReRoPE,KeyNorm等,
    另一类自然是事前修改,它们可以不加改动地实现一定的长度外推,但相应的改动需要在训练之前就引入,因此无法不微调地用于现成模型,并且这类方法是否能够Scale Up还没得到广泛认可。
    如ALIBI、KERPLE、XPOS以及HWFA等

  4. 测评方法

  5. 各技术点,以及应用模型,优缺点
    参考:https://zhuanlan.zhihu.com/p/670280576
    PoPE: 旋转位置编码
    PoPE旋转位置编码具有远程衰减的特性,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值