LLM大模型显存计算

本文围绕大模型参数、不同精度对内存计算的影响、显卡算力概念、训练时显存需求、以及大模型输入长度与显存的关系展开,还涉及了多线程对显存占用的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、目录

  1. 模型参数单位
  2. 内存计算案例
  3. 显卡算力
  4. 推理显存计算
  5. 训练显存计算
  6. huggface 官网计算 模型推理/训练 需要的显存
  7. 大模型输入长度与显存的关系
  8. 大模型推理 多线程与显存的关系

参考:https://blog.csdn.net/Johntill/article/details/132629075

二、实现

  1. 模型参数单位
    “10b”、“13b”、"70b"等术语通常指的是大型神经网络模型的参数数量。“10b” 意味着模型有大约 100 亿个参数。

  2. 内存计算案例
    ● fp32 精度,一个参数需要 32 bits, 4 bytes.
    ● fp16 精度,一个参数需要 16 bits, 2 bytes.
    ● int8 精度,一个参数需要 8 bits, 1 byte.
    内存分配: 1.模型参数 2. 梯度 3.优化器参数。

  3. 显卡算力
    显卡算力是什么?
    显卡算力是指显卡能够在给定时间内完成多少次浮点运算。它用于评估显卡的性能。通常被表示为每秒执行的浮点运算次数,也称为 FLOPS(Floating Point Operations Per Second)。
    计算显卡算力涉及到几个因素。首先,需要知道显卡的核心数量、时钟速度和每个核心的浮点运算单元数量。然后,将这些因素结合在一起,使用以下公式计算显卡算力:
    显卡算力 = 核心数量 x 时钟速度 x 浮点运算单元数量
    例如,如果显卡具有1280个核心,时钟速度为1400 MHz,每个核心具有两个浮点运

### 支持大语言模型(LLM)所需硬件配置 对于大型语言模型的支持,GPU内存是一个至关重要的因素。例如,如果使用的LLaMA模型拥有700亿个参数,则该数值即代表模型大小为700亿[^4]。 除了考虑模型本身的规模外,还需要关注其他几个方面: - **计算**:高性能的GPU不仅提供大量显存,还具备强大的并行处理能,这对于加速训练过程至关重要。 - **存储空间**:由于数据集通常非常庞大,因此需要足够的磁盘容量来保存训练样本、预训练权重以及其他辅助文件。 - **网络带宽**:当采用分布式架构时,节点间的通信效率会直接影响整体性能,所以高速稳定的网络连接必不可少。 为了更好地理解具体需求,在实际部署之前应当评估目标应用场景的具体情况,并据此调整资源配置方案。 ```python import torch def check_gpu_memory(model_size_in_billions=70, batch_size=8): """ 计算给定批次大小下所需的GPU内存总量 参数: model_size_in_billions (int): 模型参数数量(单位:十亿) batch_size (int): 单次前向传播的数据量 返回: float: 总共需要的GB数 """ # 假设每10亿参数大约占用2.5 GB VRAM vram_per_billion_params = 2.5 total_vram_needed = (model_size_in_billions * vram_per_billion_params + batch_size * 0.5) # 加上batch带来的额外开销 return round(total_vram_needed, 2) print(f"Total GPU Memory Required: {check_gpu_memory()} GB") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值