广告场景中的机器学习应用

本文由OPPO互联网技术团队分享,介绍了广告场景中机器学习的应用,包括广告排序、上下文理解、lookalike人群扩展和标签定向。重点讨论了CTR预估、上下文匹配、相似用户计算和标签定向的机器学习模型。同时,提到了异常分析在反作弊中的重要性,特别是在处理正负样本不均衡的分类场景中的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文来自OPPO互联网技术团队,如需要转载,请注明出处及作者。欢迎关注我们的公众号:OPPO_tech

按:本文主要介绍了广告场景中的机器学习应用场景,以及不同场景下对于算法要求的不同,可以作为了解算法在广告产生作用的入门文章。

在整个广告流程中,数据起着至关重要的作用,但最终数据的价值最大化,核心还是依赖于算法在各个关键流程里的作用。

我们先来看看机器学习在整个广告流程里,到底可以做些什么事,然后再讲后续我们的规划逻辑需要进一步去学习什么,了解什么。

广告的排序

在广告技术的架构中,其中非常重要的一环就是广告的排序。所以,说到算法在广告中的应用,第一个能想到的就是通过机器学习做到广告的最优排序。

广告排序逻辑上会涉及到几个因素:出价、上下文匹配、CTR预估。这本身就是一个多元素组合最优排序的问题,里头CTR预估又是广告领域里头最核心需要解决的问题。

因为很多广告系统里,可能做不到上下文理解,出价逻辑也可以做的稍微粗糙一点,但是对于CTR预估,都是重中之重,首先需要解决的问题。CTR预估本质上就是对于候选曝光用户,针对于每个广告候选池做点击概率的预估计算。所以是一个非常典型的偏回归的问题。

上下文理解
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Go-Zoe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值