本文来自OPPO互联网技术团队,如需要转载,请注明出处及作者。欢迎关注我们的公众号:OPPO_tech
按:本文主要介绍了广告场景中的机器学习应用场景,以及不同场景下对于算法要求的不同,可以作为了解算法在广告产生作用的入门文章。
在整个广告流程中,数据起着至关重要的作用,但最终数据的价值最大化,核心还是依赖于算法在各个关键流程里的作用。
我们先来看看机器学习在整个广告流程里,到底可以做些什么事,然后再讲后续我们的规划逻辑需要进一步去学习什么,了解什么。
广告的排序
在广告技术的架构中,其中非常重要的一环就是广告的排序。所以,说到算法在广告中的应用,第一个能想到的就是通过机器学习做到广告的最优排序。
广告排序逻辑上会涉及到几个因素:出价、上下文匹配、CTR预估。这本身就是一个多元素组合最优排序的问题,里头CTR预估又是广告领域里头最核心需要解决的问题。
因为很多广告系统里,可能做不到上下文理解,出价逻辑也可以做的稍微粗糙一点,但是对于CTR预估,都是重中之重,首先需要解决的问题。CTR预估本质上就是对于候选曝光用户,针对于每个广告候选池做点击概率的预估计算。所以是一个非常典型的偏回归的问题。
