大家好,我是凡人。
很荣幸赶上 AI 井喷式爆发的一年,技术革新层出不穷,随之而来的疑虑也慢慢滋生,有好多小伙伴在与我沟通的过程中,表现出了焦虑和迷茫,那么今天就从技术的角度上说说 AI 在普通 IT 企业内的应用,有不全面不完善的地方还请多担待。
首先我们先来搞明白 AI 在 IT 企业业务中的落点在哪,产品经理、程序员、测试工程师、实施工程师需要 AI 配合的工作落点在哪?
以下是一个简单的应用例子:这是一个在线申报小系统的业务流程中的一段,如果我们要建设该系统,AI 工具到底能帮我们做什么?我从以下五个方面进行阐述:
一、需求
首先需要针对每个节点把需求搞得清清楚楚,甚至要到字段级别,同时包含每个字段之间业务逻辑的关系。(人工)
可以让 AI 帮助归纳和整理收集到的声音、文档、视频等内容,提炼出客户需求的重点要点,梳理后根据需求规格说明书模板,让 AI 将整理好的内容逐项填入到需求说明书中去,同时可以利用 AI 工具对业务流程进行设计。(人工+ AI )
这个阶段一定要把控好 AI 分析和生成的内容,在经历内部机构人工修改审核、外部客户人工修改审核后,完成需求采集。(人工)
二、产品设计和UI设计
根据明确的需求规格说明书,进行简单的产品设计搭建,包括设定样式、色调、基础布局等内容,利用产品设计 AI 工具(墨刀AI)提供灵感,产品经理也可以利用AI工具协助设计交互。(人工+ AI )
产品设计完成后,同样要进行内部评审 + 外部评审。(人工)
UI设计是对产品设计中关键页面进行高保真图片设计,这时可以利用AI的图生图,对产品设计内容转换为 UI 设计,这里可以让专业的 prompt 工程师协助,肯定会更好,也会更准确的命中设计图,而且毕竟是商业行为,最起码要 在 90 分以上。(人工+ AI )
UI 设计完成后,也需要进行内部评审 + 外部评审。(人工)
三、开发
需求规格说明书 + 产品设计 + UI 设计完成了,下面要进行开发了。
首先是框架选择,根据需求说明书中提到应用的规模、面向的群体、高并发、未来增长数据预估、是否要符合国产化建设、是否存在三方集成和采购等等。(人工)
其次根据业务需求来定制架构,选择合适的语言、合适的架构体系、合适的开源或商用软件等等,这里建议由专业的架构师来担任,或者由架构师调教的 AI协助搭建,可以节省一部分单技术点的配置代码编写。(人工+ AI )
技术架构制定好后,需要制定开发规范,建议从实际出发,AI 负责提出大而全的代码要求规范,重点由架构师来挑选。(人工+ AI )
进入实际的开发阶段,目前即使不用 AI,普通的代码生成器对单表、多表、树形结构都可以生成 CRUD 代码。所以,重点是利用 AI 对部分代码进行扩展性改造(如改造成适合的设计模式),减少后期重构的风险,同时利用 AI 对代码已知逻辑进行优化,也可以使用 AI 对出现的 BUG 进行追查,直接丢给 AI ,大部分都能解决。(人工+ AI )
四、测试
进入测试阶段(以黑盒和白盒为例),白盒测试还是通过原有的自动化测试流程进行,而黑盒测试可以通过 RPA 工具(编写脚本、设定)+ QC系统进行测试,测试完毕后同步将缺陷识别并分配给对应开发人员,但如果业务过于复杂,可能还需要人工来处理。(人工+ AI )
五、实施
实施部署阶段,以云服务部署为例,先根据部署需求,通过 AI 辅助生成网络拓扑图。
通过云服务器环境及各软件的依赖,一步步引导 AI 形成部署脚本和配置、解决冲突和报错,同时在前期需要大量测试,不断迭代 AI 反馈的内容,最终形成完整的 SOP 。如果做扩展,可以使用 RPA + SOP 标准化内容到分布式和集群中去部署。(人工+ AI )
以上只是对 AI 的应用在 IT 企业项目开发过程中简单落地的做法,其实每个阶段都离不开人的协调。人工主要是对 AI 的引导、把控和纠正作用,所以只有快速学会AI知识,并在实际工作中落下来,提升自身的AI核心竞争力才是王道。
怎么样今天的内容还满意吗?再次感谢观众老爷的观看。
最后,祝您早日实现财务自由,还请给个赞,谢谢!