DeepSeek+AnythingLLM 搭建专属知识库,小白也能轻松拿捏!

在这里插入图片描述


场景: 你的公司内部文档分散,各种合同、手册、产品文档堆积如山,想找到某个特定文档或信息时,往往费时费力,甚至需要翻阅大堆纸质文件。新员工上岗培训也是一项庞大的任务,不仅需要讲解,还要反复查找资料。面对这样的问题,企业如何高效地管理和获取知识呢?

解决方案: 通过 AnythingLLM Desktop,你可以快速搭建一个本地化的知识库,上传企业内部的各种文件,一键生成私有数据库,确保所有信息都在你掌控之中。比如,将公司合同、员工手册、产品文档、会议纪要等资料上传到系统。接下来,接入 DeepSeek 模型,员工可以通过简单提问快速获取所需的信息。例如:“第三季度销售目标是什么?”、“如何申请年假?”等问题,只需秒级查询,答案迅速呈现!

优势:
数据完全本地存储, 确保所有资料保密,杜绝外泄风险。无论是财务报表还是客户信息,都能安全存储。
支持离线使用,即使处于内网环境,也能实现高效的AI运作,确保任何时候都能快速获取信息。
简化新员工培训,新员工只需提问即可得到快速的答案,告别冗长的培训文档和一对一讲解。

实际案例: 一家全球500强公司部署了这套方案,员工工作效率提升了20%,新员工入职培训时间缩短了50%,有效节省了大量人力和时间成本。

使用 DeekSeek-R1 和 AnythingLLM 搭建本地知识库,完全本地化,无需联网,并解决大模型杜撰问题。

一、本地部署DeepSeek + Ollama

本地部署DeepSeek + Ollama 小白也能轻松搞定!

二、AnythingLLM 下载和安装
2.1. AnythingLLM 下载

官网链接:https://anythingllm.com/desktop
在这里插入图片描述

2.2. AnythingLLM 安装

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
点击Get Started
在这里插入图片描述
它首先会让我们选择LLM,我们搜索Ollama,并确定下面的模型与我们之前下载的相同,我这里是deepseek-r1:1.5b,然后点击下一步

Ollama

在这里插入图片描述
再点击下一步
模型配置

  • 1、LLM Selection(大语言模型选择):

这里选择了名为 Ollama 的模型。

说明用户的模型和聊天记录仅在运行 Ollama 模型的机器上可访问,这意味着数据不会在其他地方被存储或访问,从而增强了数据的安全性和隐私性。

  • 2、Embedding Preference(嵌入偏好):

使用了名为 AnythingLLM Embedder 的嵌入工具。

说明用户的文档文本是在 AnythingLLM 的实例上私密嵌入的,这意味着文本数据的处理和转换是在本地进行的,不会泄露给第三方。

  • 3、Vector Database(向量数据库):

使用了 LanceDB 作为向量数据库。

说明用户的向量和文档文本都是存储在这个 AnythingLLM 实例上的,这再次强调了数据的私密性和安全性。
在这里插入图片描述
收集用户对 AnythingLLM 服务的反馈,可选的调查问卷,可直接跳过。之后我们点击Skip Survey
在这里插入图片描述

2.3. AnythingLLM 创建工作区

输入工作区名称Default,自定义即可,点击下一步

Default

在这里插入图片描述
之后我们便来到了AnythingLLM的主界面,到这里我们就算启动成功了
在这里插入图片描述

2.4. AnythingLLM 主题设置

在这里插入图片描述

2.5. AnythingLLM 界面语言设置

界面默认是英文的,修改为中文
在这里插入图片描述

2.6. AnythingLLM 回答语言设置

当我们问的问题在所有文档里面都找不到的时候,AnythingLLM会诚实的告诉我们找不到,但回答用的是英文。你如果想改成中文的话,可以点击工作区的配置按钮,再点击里面的聊天配置,将拒绝响应内容修改为中文。

在此工作区中没有相关信息来回答您的查询。

在这里插入图片描述
你可能会发现上面有个聊天提示也是英文的,与下面拒绝响应内容不同的是,聊天提示是在问题有对应文档的时候使用的
AgythingLLM会将你的问题,对应的文档内容和聊天提示,同时发送给DeepSeek,引导他通过文档来回答问题,如果聊天提示为英文的话,Deepseek偶尔也会选用英文回答,为了解决这个问题,你也可以将聊天提示修改为中文。

鉴于以下对话、相关上下文和后续问题,请回答用户当前提出的问题。仅根据上述信息回复问题,并按照用户的指示进行回答。

在这里插入图片描述
全部修改完毕后,我们点击最下面的Update Workspace,然后返回问答页面。

2.7. AnythingLLM 聊天对话

Anything LLM的左侧为工作区,这个Default便是我们初次启动时定义的工作区名称,右侧便是对话区
在这里插入图片描述
我们可以随便在对话区问问试试

申领重大疾病保险金时,应提供什么文件?

默认回答的是英文,看不懂
在这里插入图片描述
如果设置了 2.6. AnythingLLM 回答语言设置此时,AnythingLLM给我们返回的就是中文效果了。
在这里插入图片描述

2.8. 回答分析

在这里插入图片描述
从上面大模型回答分析得出结论,当提问大模型不知道的知识时,大模型会搜索网上资料或者撰造一些知识总结形成最终回答,很明显,当提问私域保险知识时,大模型回答是不符合预期的。

我们怎么能上大模型诚实地告诉我们它不知道呢?我们可以点击工作区左侧的设置按钮,再点击聊天配置
可以看到这里有两介聊天模式,一个是聊天,一个是查询,当AnythingLLM没有在我们上传的文档里面找到,任何与间题相关的内容的时候,这两种模的处理方式是不一样的。

  • 聊天模式:会根据大模型自己的知识给我们一个答案,即使这个答案是错误的,它也会强行回答。
  • 查询模式:则会在此时诚实地告诉我们,找不到任何相关的文档。
    我这就将密改成查询模式
    在这里插入图片描述
    然后点击Jpdate Workspace更新工作区
    在这里插入图片描述
    这样可以有效地防止大模型胡说八道,设置好了之后,我们回来再问一下相同的问题
申领重大疾病保险金时,应提供什么文件?

在这里插入图片描述

可以看到这次AnythingLLM,直接告诉我们没有相关的信息

三、知识库
3.1. 上传文档

我们把这一个文件拖到AnythingLLM里面
在这里插入图片描述

3.2. 文档向量化

选择全选,点击Move to Workspace文档就会出现在右边的工作区文档区域
在这里插入图片描述

紧接着我们点击Save and Embed,把它们保存起来
在这里插入图片描述

3.3. DeepSeek + 知识库知识体验

然后我们回来再把前面的问题一遍

申领重大疾病保险金时,应提供什么文件?

在这里插入图片描述

答案基本正确。
我们,点击下方的Show Citations,之后就可以发现DeepSeek所参考的文档列表
在这里插入图片描述
在这里插入图片描述

四、多工作区管理

我们在AnythingLLM里面可以定义多个工作区,每个工作区都有自己上传的文档,聊天模式等,彼此之间互相隔离。

4.1. 创建工作区

比如我们可以创建名为地区介绍的工作区
在这里插入图片描述

4.2. 设置聊天模式

同样,我把它的聊天模式设为查询
在这里插入图片描述

4.3. 验证工作区之间是否隔离

问一下以前的问题

申领重大疾病保险金时,应提供什么文件?

在这里插入图片描述
回答的答案都是没有信息的。可以看出这两个工作区的文档确实是互相隔离的。

4.4. 上传文档

下面我们往这个新的工作区里面上传一个文档
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4.5. 测试知识库效果

在这里插入图片描述
在这里插入图片描述

4.6. 结果评估

从上面回答,答案符合预期。

五、AnythingLLM 接入DeepSeek R1(在线)
5.1. 注册DeepSeek账号

①先去官网注册账号:https://platform.deepseek.com/sign_in
在这里插入图片描述

5.2. 创建API密钥,并复制

在这里插入图片描述
AnythingLLM支持直接调用DeepSeek官方提供的API接口。

5.3. 修改默认模型配置

在工作区右侧点击设置,选择聊天设置,可以更改LLM模型。
在这里插入图片描述

选择DeepSeek,输入API Key,选择DeepSeek R1模型。
在这里插入图片描述

5.4. 填入API密钥

在这里插入图片描述
保存更新
在这里插入图片描述
点击最后更新工作区后就可以享受官方提供的大模型服务了,只是调用的模型变为官方API接口。

5.5. 体验DeepSeek 模型服务

看到这里,你是否发现AI私有化部署并没有想象中复杂?其实技术平权化的浪潮早已到来,重要的是勇敢迈出第一步。

毕竟,当技术门槛不复存在,唯一限制我们的,就只剩下想象力。
记住,每个科技达人都是从点击『安装』按钮开始的!

希望本文能帮助你迈出第一步,探索本地 AI 的无限可能。如果你在部署过程中遇到任何问题,欢迎在评论区留言交流!

### 使用 DeepSeekAnythingLLM 搭建本地知识库 #### 准备环境 为了成功搭建基于 DeepSeekAnythingLLM 的本地知识库,首先需要准备合适的运行环境。这通常意味着安装必要的依赖项以及配置开发机器以满足这两个工具的要求。 #### 安装 DeepSeekAnythingLLM 按照官方文档指导完成 DeepSeek 及其相关组件的安装过程[^2]。对于 AnythingLLM,则应遵循其提供的指南来设置相应的环境变量和其他必需参数[^1]。 #### 创建并命名工作区 创建一个新的文件夹作为项目的工作目录,并为其赋予特定名称以便识别,例如“法律知识库”或“中医知识库”。此操作有助于保持项目的条理性和可管理性。 #### 配置嵌入模型与向量数据库 利用 AnythingLLM 提供的默认配置选项,可以轻松实现 embedding 模型和向量数据库之间的无缝协作。这种组合能够有效地处理文本数据并向用户提供精准的信息检索服务[^3]。 #### 加载自定义资料集 将预先整理好的文档集合导入到新建立的知识库中。这些资源可能包括但不限于书籍章节、研究论文或其他形式的专业文献。通过这种方式,可以根据个人需求定制专属的内容存储空间。 #### 测试查询功能 最后一步是对整个系统的性能进行全面测试。尝试输入不同类型的查询请求,观察返回的结果是否符合预期目标。如果遇到任何问题或者不满意的地方,及时调整优化直至达到满意的效果为止。 ```bash # 示例命令用于启动 DeepSeek 服务器 deepseek start --workspace=law_knowledge_base # 启动 AnythingLLM 并加载预训练模型 anythingllm serve --model-path=/path/to/model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gblfy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值