chapter_preliminaries-calculus

微积分

🏷sec_calculus
参考动手学深度学习教材对应章节:https://zh-v2.d2l.ai/
根据课程相关章节的Jupyter文件进行运行得到结果并导出。

在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。
为了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。
如 :numref:fig_circle_area所示,内接多边形的等长边越多,就越接近圆。
这个过程也被称为逼近法(method of exhaustion)。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VscLisBq-1651477457974)(../img/polygon-circle.svg)]

🏷fig_circle_area

事实上,逼近法就是积分(integral calculus)的起源,
我们将在 :numref:sec_integral_calculus中详细描述。
2000多年后,微积分的另一支,微分(differential calculus)被发明出来。
在微分学最重要的应用是优化问题,即考虑如何把事情做到最好.
正如在 :numref:subsec_norms_and_objectives中讨论的那样,
这种问题在深度学习中是无处不在的。

在深度学习中,我们“训练”模型,不断更新它们,使它们在看到越来越多的数据时变得越来越好。
通常情况下,变得更好意味着最小化一个损失函数(loss function),
即一个衡量“我们的模型有多糟糕”这个问题的分数。
最终,我们真正关心的是生成一个模型,它能够在从未见过的数据上表现良好。
但“训练”模型只能将模型与我们实际能看到的数据相拟合。
因此,我们可以将拟合模型的任务分解为两个关键问题:

  • 优化(optimization):用模型拟合观测数据的过程;
  • 泛化(generalization):数学原理和实践者的智慧,能够指导我们生成出有效性超出用于训练的数据集本身的模型。

为了帮助你在后面的章节中更好地理解优化问题和方法,
本节提供了一个非常简短的入门教程,帮你快速掌握深度学习中常用的微分知识。

导数和微分

我们首先讨论导数的计算,这是几乎所有深度学习优化算法的关键步骤。
在深度学习中,我们通常选择对于模型参数可微的损失函数。
简而言之,对于每个参数,
如果我们把这个参数增加减少一个无穷小的量,我们可以知道损失会以多快的速度增加或减少,

假设我们有一个函数 f : R n → R f: \mathbb{R}^n \rightarrow \mathbb{R} f:RnR,其输入和输出都是标量。
(如果 f f f导数存在,这个极限被定义为)

( f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h . f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}. f(x)=h0limhf(x+h)f(x).)
:eqlabel:eq_derivative

如果 f ′ ( a ) f'(a) f(a)存在,则称 f f f a a a处是可微(differentiable)的。
如果 f f f在一个区间内的每个数上都是可微的,则此函数在此区间中是可微的。
我们可以将 :eqref:eq_derivative中的导数 f ′ ( x ) f'(x) f(x)解释为 f ( x ) f(x) f(x)相对于 x x x瞬时(instantaneous)变化率
所谓的瞬时变化率是基于 x x x中的变化 h h h,且 h h h接近 0 0 0

为了更好地解释导数,让我们做一个实验。
(定义 u = f ( x ) = 3 x 2 − 4 x u=f(x)=3x^2-4x u=f(x)=3x24x)如下:

%matplotlib inline
import numpy as np
from IPython import display
from d2l import torch as d2l


def f(x):
    return 3 * x ** 2 - 4 * x

[通过令 x = 1 x=1 x=1并让 h h h接近 0 0 0] :eqref:eq_derivative中( f ( x + h ) − f ( x ) h \frac{f(x+h)-f(x)}{h} hf(x+h)f(x)的数值结果接近 2 2 2)。
虽然这个实验不是一个数学证明,但我们稍后会看到,当 x = 1 x=1 x=1时,导数 u ′ u' u 2 2 2

def numerical_lim(f, x, h):
    return (f(x + h) - f(x)) / h

h = 0.1
for i in range(5):
    print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
    h *= 0.1
h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.03000
h=0.00100, numerical limit=2.00300
h=0.00010, numerical limit=2.00030
h=0.00001, numerical limit=2.00003

让我们熟悉一下导数的几个等价符号。
给定 y = f ( x ) y=f(x) y=f(x),其中 x x x y y y分别是函数 f f f的自变量和因变量。以下表达式是等价的:

f ′ ( x ) = y ′ = d y d x = d f d x = d d x f ( x ) = D f ( x ) = D x f ( x ) , f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx} f(x) = Df(x) = D_x f(x), f(x)=y=dxdy=dxdf=dxdf(x)=Df(x)=Dxf(x),

其中符号 d d x \frac{d}{dx} dxd D D D微分运算符,表示微分操作。
我们可以使用以下规则来对常见函数求微分:

  • D C = 0 DC = 0 DC=0 C C C是一个常数)
  • D x n = n x n − 1 Dx^n = nx^{n-1} Dxn=nxn1幂律(power rule), n n n是任意实数)
  • D e x = e x De^x = e^x Dex=ex
  • D ln ⁡ ( x ) = 1 / x D\ln(x) = 1/x Dln(x)=1/x

为了微分一个由一些常见函数组成的函数,下面的一些法则方便使用。
假设函数 f f f g g g都是可微的, C C C是一个常数,则:

常数相乘法则
d d x [ C f ( x ) ] = C d d x f ( x ) , \frac{d}{dx} [Cf(x)] = C \frac{d}{dx} f(x), dxd[Cf(x)]=Cdxdf(x),

加法法则

d d x [ f ( x ) + g ( x ) ] = d d x f ( x ) + d d x g ( x ) , \frac{d}{dx} [f(x) + g(x)] = \frac{d}{dx} f(x) + \frac{d}{dx} g(x), dxd[f(x)+g(x)]=dxdf(x)+dxdg(x),

乘法法则

d d x [ f ( x ) g ( x ) ] = f ( x ) d d x [ g ( x ) ] + g ( x ) d d x [ f ( x ) ] , \frac{d}{dx} [f(x)g(x)] = f(x) \frac{d}{dx} [g(x)] + g(x) \frac{d}{dx} [f(x)], dxd[f(x)g(x)]=f(x)dxd[g(x)]+g(x)dxd[f(x)],

除法法则

d d x [ f ( x ) g ( x ) ] = g ( x ) d d x [ f ( x ) ] − f ( x ) d d x [ g ( x ) ] [ g ( x ) ] 2 . \frac{d}{dx} \left[\frac{f(x)}{g(x)}\right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}. dxd[g(x)f(x)]=[g(x)]2g(x)dxd[f(x)]f(x)dxd[g(x)].

现在我们可以应用上述几个法则来计算 u ′ = f ′ ( x ) = 3 d d x x 2 − 4 d d x x = 6 x − 4 u'=f'(x)=3\frac{d}{dx}x^2-4\frac{d}{dx}x=6x-4 u=f(x)=3dxdx24dxdx=6x4
x = 1 x=1 x=1,我们有 u ′ = 2 u'=2 u=2:在这个实验中,数值结果接近 2 2 2
这一点得到了我们在本节前面的实验的支持。
x = 1 x=1 x=1时,此导数也是曲线 u = f ( x ) u=f(x) u=f(x)切线的斜率。

[为了对导数的这种解释进行可视化,我们将使用matplotlib],
这是一个Python中流行的绘图库。
要配置matplotlib生成图形的属性,我们需要(定义几个函数)。
在下面,use_svg_display函数指定matplotlib软件包输出svg图表以获得更清晰的图像。

注意,注释#@save是一个特殊的标记,会将对应的函数、类或语句保存在d2l包中。
因此,以后无须重新定义就可以直接调用它们(例如,d2l.use_svg_display())。

def use_svg_display():  #@save
    """使用svg格式在Jupyter中显示绘图"""
    display.set_matplotlib_formats('svg')

我们定义set_figsize函数来设置图表大小。
注意,这里我们直接使用d2l.plt,因为导入语句
from matplotlib import pyplot as plt已标记为保存到d2l包中。

def set_figsize(figsize=(3.5, 2.5)):  #@save
    """设置matplotlib的图表大小"""
    use_svg_display()
    d2l.plt.rcParams['figure.figsize'] = figsize

下面的set_axes函数用于设置由matplotlib生成图表的轴的属性。

#@save
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    """设置matplotlib的轴"""
    axes.set_xlabel(xlabel)
    axes.set_ylabel(ylabel)
    axes.set_xscale(xscale)
    axes.set_yscale(yscale)
    axes.set_xlim(xlim)
    axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
    axes.grid() # Axes.grid()函数用于配置网格线

通过这三个用于图形配置的函数,我们定义了plot函数来简洁地绘制多条曲线,
因为我们需要在整个书中可视化许多曲线。

#@save
# https://finthon.com/category/data-processing/matplotlib/
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
         ylim=None, xscale='linear', yscale='linear',
         fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
    """绘制数据点"""
    if legend is None:
        legend = []
    set_figsize(figsize) # 设置画板大小
    axes = axes if axes else d2l.plt.gca() # plt.gcf()当前图表、plt.gca()获取子图,分别表示Get Current Figure和Get Current Axes

    # 如果X有一个轴,输出True,用来判断是否为一个轴
    def has_one_axis(X):
        return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
                and not hasattr(X[0], "__len__"))

    # hasattr(x, "ndim"):hasattr()函数用于判断是否包含对应的属性 ,ndim表示维度的个数 
    # hasattr(X[0], "__len__"):用来判断x列表中的第一个元素是否有长度属性,也就是判断是否为数据
    
    if has_one_axis(X):
        X = [X]  # 将数组数据类型转变为列表数据类型
    
    if Y is None:
        X, Y = [[]] * len(X), X # 默认情况下,赋值给X, Y
    elif has_one_axis(Y):
        Y = [Y]  # 将数组数据类型转变为列表数据类型
    if len(X) != len(Y):
        X = X * len(Y)
    axes.cla() # axiss模块中的Axes.cla()函数用于清除当前轴
    for x, y, fmt in zip(X, Y, fmts):
        if len(x):
            axes.plot(x, y, fmt) #  axes.plot用于绘制XY坐标系的点、线或其他标记形状
        else:
            axes.plot(y, fmt)
    set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend) # 设置axes模块的属性

现在我们可以[绘制函数 u = f ( x ) u=f(x) u=f(x)及其在 x = 1 x=1 x=1处的切线 y = 2 x − 3 y=2x-3 y=2x3],
其中系数 2 2 2是切线的斜率。

x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
x, [f(x), 2 * x - 3]
C:\Users\Administrator\AppData\Local\Temp\ipykernel_42036\1575940066.py:3: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`
  display.set_matplotlib_formats('svg')





(array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2,
        1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1, 2.2, 2.3, 2.4, 2.5,
        2.6, 2.7, 2.8, 2.9]),
 [array([ 0.  , -0.37, -0.68, -0.93, -1.12, -1.25, -1.32, -1.33, -1.28,
         -1.17, -1.  , -0.77, -0.48, -0.13,  0.28,  0.75,  1.28,  1.87,
          2.52,  3.23,  4.  ,  4.83,  5.72,  6.67,  7.68,  8.75,  9.88,
         11.07, 12.32, 13.63]),
  array([-3. , -2.8, -2.6, -2.4, -2.2, -2. , -1.8, -1.6, -1.4, -1.2, -1. ,
         -0.8, -0.6, -0.4, -0.2,  0. ,  0.2,  0.4,  0.6,  0.8,  1. ,  1.2,
          1.4,  1.6,  1.8,  2. ,  2.2,  2.4,  2.6,  2.8])])

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MwjsgQk6-1651477457977)(output_13_2.svg)]

x, type(x), f(x), type(f(x)), 2 * x + 3,  # x, f(x), 2*x + 3: 函数输入、函数输出、函数导数
(hasattr(x, "ndim") and x.ndim == 1 or isinstance(x, list)
                and not hasattr(x[0], "__len__"))

x, [x],type([x]), x[0],x[1],hasattr(x[0], "__len__")
x2, y2 = [[]] * len(x), x
Y = [[f(x), 2 * x - 3]]
x = [x]
for x,y in zip([([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2,
       1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1, 2.2, 2.3, 2.4, 2.5,
       2.6, 2.7, 2.8, 2.9]), ([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2,
       1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1, 2.2, 2.3, 2.4, 2.5,
       2.6, 2.7, 2.8, 2.9])],[([ 0.  , -0.37, -0.68, -0.93, -1.12, -1.25, -1.32, -1.33, -1.28,
       -1.17, -1.  , -0.77, -0.48, -0.13,  0.28,  0.75,  1.28,  1.87,
        2.52,  3.23,  4.  ,  4.83,  5.72,  6.67,  7.68,  8.75,  9.88,
       11.07, 12.32, 13.63]), ([-3. , -2.8, -2.6, -2.4, -2.2, -2. , -1.8, -1.6, -1.4, -1.2, -1. ,
       -0.8, -0.6, -0.4, -0.2,  0. ,  0.2,  0.4,  0.6,  0.8,  1. ,  1.2,
        1.4,  1.6,  1.8,  2. ,  2.2,  2.4,  2.6,  2.8])]):
    print(x,y)  # 进行分组
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9] [0.0, -0.37, -0.68, -0.93, -1.12, -1.25, -1.32, -1.33, -1.28, -1.17, -1.0, -0.77, -0.48, -0.13, 0.28, 0.75, 1.28, 1.87, 2.52, 3.23, 4.0, 4.83, 5.72, 6.67, 7.68, 8.75, 9.88, 11.07, 12.32, 13.63]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9] [-3.0, -2.8, -2.6, -2.4, -2.2, -2.0, -1.8, -1.6, -1.4, -1.2, -1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8]

偏导数

到目前为止,我们只讨论了仅含一个变量的函数的微分。
在深度学习中,函数通常依赖于许多变量。
因此,我们需要将微分的思想推广到多元函数(multivariate function)上。

y = f ( x 1 , x 2 , … , x n ) y = f(x_1, x_2, \ldots, x_n) y=f(x1,x2,,xn)是一个具有 n n n个变量的函数。
y y y关于第 i i i个参数 x i x_i xi偏导数(partial derivative)为:

∂ y ∂ x i = lim ⁡ h → 0 f ( x 1 , … , x i − 1 , x i + h , x i + 1 , … , x n ) − f ( x 1 , … , x i , … , x n ) h . \frac{\partial y}{\partial x_i} = \lim_{h \rightarrow 0} \frac{f(x_1, \ldots, x_{i-1}, x_i+h, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_i, \ldots, x_n)}{h}. xiy=h0limhf(x1,,xi1,xi+h,xi+1,,xn)f(x1,,xi,,xn).

为了计算 ∂ y ∂ x i \frac{\partial y}{\partial x_i} xiy
我们可以简单地将 x 1 , … , x i − 1 , x i + 1 , … , x n x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n x1,,xi1,xi+1,,xn看作常数,
并计算 y y y关于 x i x_i xi的导数。
对于偏导数的表示,以下是等价的:

∂ y ∂ x i = ∂ f ∂ x i = f x i = f i = D i f = D x i f . \frac{\partial y}{\partial x_i} = \frac{\partial f}{\partial x_i} = f_{x_i} = f_i = D_i f = D_{x_i} f. xiy=xif=fxi=fi=Dif=Dxif.

梯度

🏷subsec_calculus-grad

我们可以连结一个多元函数对其所有变量的偏导数,以得到该函数的梯度(gradient)向量。
具体而言,设函数 f : R n → R f:\mathbb{R}^n\rightarrow\mathbb{R} f:RnR的输入是
一个 n n n维向量 x = [ x 1 , x 2 , … , x n ] ⊤ \mathbf{x}=[x_1,x_2,\ldots,x_n]^\top x=[x1,x2,,xn],并且输出是一个标量。
函数 f ( x ) f(\mathbf{x}) f(x)相对于 x \mathbf{x} x的梯度是一个包含 n n n个偏导数的向量:

∇ x f ( x ) = [ ∂ f ( x ) ∂ x 1 , ∂ f ( x ) ∂ x 2 , … , ∂ f ( x ) ∂ x n ] ⊤ , \nabla_{\mathbf{x}} f(\mathbf{x}) = \bigg[\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_n}\bigg]^\top, xf(x)=[x1f(x),x2f(x),,xnf(x)],

其中 ∇ x f ( x ) \nabla_{\mathbf{x}} f(\mathbf{x}) xf(x)通常在没有歧义时被 ∇ f ( x ) \nabla f(\mathbf{x}) f(x)取代。

假设 x \mathbf{x} x n n n维向量,在微分多元函数时经常使用以下规则:

  • 对于所有 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n,都有 ∇ x A x = A ⊤ \nabla_{\mathbf{x}} \mathbf{A} \mathbf{x} = \mathbf{A}^\top xAx=A
  • 对于所有 A ∈ R n × m \mathbf{A} \in \mathbb{R}^{n \times m} ARn×m,都有 ∇ x x ⊤ A = A \nabla_{\mathbf{x}} \mathbf{x}^\top \mathbf{A} = \mathbf{A} xxA=A
  • 对于所有 A ∈ R n × n \mathbf{A} \in \mathbb{R}^{n \times n} ARn×n,都有 ∇ x x ⊤ A x = ( A + A ⊤ ) x \nabla_{\mathbf{x}} \mathbf{x}^\top \mathbf{A} \mathbf{x} = (\mathbf{A} + \mathbf{A}^\top)\mathbf{x} xxAx=(A+A)x
  • ∇ x ∥ x ∥ 2 = ∇ x x ⊤ x = 2 x \nabla_{\mathbf{x}} \|\mathbf{x} \|^2 = \nabla_{\mathbf{x}} \mathbf{x}^\top \mathbf{x} = 2\mathbf{x} xx2=xxx=2x

同样,对于任何矩阵 X \mathbf{X} X,都有 ∇ X ∥ X ∥ F 2 = 2 X \nabla_{\mathbf{X}} \|\mathbf{X} \|_F^2 = 2\mathbf{X} XXF2=2X
正如我们之后将看到的,梯度对于设计深度学习中的优化算法有很大用处。

链式法则

然而,上面方法可能很难找到梯度。
这是因为在深度学习中,多元函数通常是复合(composite)的,
所以我们可能没法应用上述任何规则来微分这些函数。
幸运的是,链式法则使我们能够微分复合函数。

让我们先考虑单变量函数。假设函数 y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x)都是可微的,根据链式法则:

d y d x = d y d u d u d x . \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}. dxdy=dudydxdu.

现在让我们把注意力转向一个更一般的场景,即函数具有任意数量的变量的情况。
假设可微分函数 y y y有变量 u 1 , u 2 , … , u m u_1, u_2, \ldots, u_m u1,u2,,um,其中每个可微分函数 u i u_i ui都有变量 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn
注意, y y y x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,xn的函数。
对于任意 i = 1 , 2 , … , n i = 1, 2, \ldots, n i=1,2,,n,链式法则给出:

d y d x i = d y d u 1 d u 1 d x i + d y d u 2 d u 2 d x i + ⋯ + d y d u m d u m d x i \frac{dy}{dx_i} = \frac{dy}{du_1} \frac{du_1}{dx_i} + \frac{dy}{du_2} \frac{du_2}{dx_i} + \cdots + \frac{dy}{du_m} \frac{du_m}{dx_i} dxidy=du1dydxidu1+du2dydxidu2++dumdydxidum

小结

  • 微分和积分是微积分的两个分支,前者可以应用于深度学习中的优化问题。
  • 导数可以被解释为函数相对于其变量的瞬时变化率,它也是函数曲线的切线的斜率。
  • 梯度是一个向量,其分量是多变量函数相对于其所有变量的偏导数。
  • 链式法则使我们能够微分复合函数。

练习

  1. 绘制函数 y = f ( x ) = x 3 − 1 x y = f(x) = x^3 - \frac{1}{x} y=f(x)=x3x1和其在 x = 1 x = 1 x=1处切线的图像。
  2. 求函数 f ( x ) = 3 x 1 2 + 5 e x 2 f(\mathbf{x}) = 3x_1^2 + 5e^{x_2} f(x)=3x12+5ex2的梯度。
  3. 函数 f ( x ) = ∥ x ∥ 2 f(\mathbf{x}) = \|\mathbf{x}\|_2 f(x)=x2的梯度是什么?
  4. 你可以写出函数 u = f ( x , y , z ) u = f(x, y, z) u=f(x,y,z),其中 x = x ( a , b ) x = x(a, b) x=x(a,b) y = y ( a , b ) y = y(a, b) y=y(a,b) z = z ( a , b ) z = z(a, b) z=z(a,b)的链式法则吗?
# 练习一
def f(x): # 定义函数
    return x * x * x - 1 / x

def numerical_lim(f, x, h): # 计算梯度
    return (f(x + h) - f(x)) / h

h = 0.1
for i in range(5):
    print(f'h={h:.5f},numerical limit={numerical_lim(f, 1, h)}')
    h *= 0.1
h=0.10000,numerical limit=4.219090909090913
h=0.01000,numerical limit=4.020199009900981
h=0.00100,numerical limit=4.002001999000359
h=0.00010,numerical limit=4.000200019997901
h=0.00001,numerical limit=4.000020000216596
x = np.arange(0.5, 1.5, 0.1)
plot(x, [f(x), 4*x - 4], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
C:\Users\Administrator\AppData\Local\Temp\ipykernel_42036\1575940066.py:3: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`
  display.set_matplotlib_formats('svg')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-27gtzcka-1651477457978)(output_17_1.svg)]

# 练习2
# f(x)对x1求导为: 6 * x1

# f(x)对x2求导为:5 * e^(x2)

# 梯度为:[6*x1, 5*e^(x2)] 
# 练习3
# 梯度为: X/||X||2
# 练习4
# 链式法则:
# f`(a) = f`(x) * x`a + f`(y) * y`a + f`(z) * z`a
# f`(b) = f`(x) * x`b + f`(y) * y`b + f`(z) * z`b

Discussions

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值