adaboost深入剖析(下)

上一章《adaboost深入剖析(上)》中,我对于adaboost是什么,怎么用做了一个简单介绍,并分享了一个简单的例子。那么在这一部分我想和大家深入分析关于Adaboost算法的误差界问题。

我认为这个问题触及adaboost的灵魂本质,也就是讲,通过了解这个问题,你就能够知道为什么通过adaboost这种集成学习的方法,原本很烂的一堆弱分类器就可以形成一个超级强的强分类器。

adaboost的本质就是他能在不断地学习过程中融入新的分类器,并且指数级速度的降低误差。

首先最后的误差可以表示为:\frac{1}{n}\sum_{i=1}^n I(G(x_i)\neq y_i)

G(x_i)\neq y_i的时候,我们可以得到y_iG(x_i)<0

所以再推一步可以得到exp(-y_iG(x_i))>1

G(x_i)=y_i的时候,我们可以得到y_iG(x_i)>0

所以再推一步可以得到1>exp(-y_iG(x_i))>0

所以我们可以得到\frac{1}{n}\sum_{i=1}^n I(G(x_i)\neq y_i)<=\frac{1}{n}\sum_{i=1}^n exp(-y_if(x_i))

又因为w_{m+1,i}=\frac{w_{mi}}{Z_m}exp(-\alpha_my_iG_m(x))

所以有了下面的推导

也就是说最后得出这个结论

\frac{1}{n}\sum_{i=1}^n I(G(x_i)\neq y_i)<=\frac{1}{n}\sum_{i=1}^n exp(-y_if(x_i))=\prod_{m=1}^M Z_m

继续往下推

我们得出这个结论,也就是说

\prod_{m=1}^M Z_m=\prod_{m=1}^M 2\sqrt{e_m(1-e_m)}=\prod_{m=1}^M sqrt(1-4\gamma_m^2)

通过泰勒展开,又可以证明下面这个不等式

\prod_{m=1}^M sqrt(1-4\gamma_m^2)<=exp(-2\sum_{m=1}^M \gamma_m^2)

则如果存在一个\gamma>0,对于所有的\gamma_m\gamma_m>\gamma,上式可以继续化简为\prod_{m=1}^M sqrt(1-4\gamma_m^2)<=exp(-2M \gamma_m^2)

最终我们的结论是\frac{1}{n}\sum_{i=1}^n I(G(x_i)\neq y_i)<=exp(-2M \gamma_m^2),也就是说符合条件的弱分类器越来越多,最终我们的误差会呈现出一个e的指数状态的减少。

好了,着急去上课,下这一部分先写到这里,还有一部分公式没有来得及敲,贴的截图,晚上下课后我会一起修改了

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

与贰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值