- 特点:
- 包含若干个指标,分变说明评价对象的不同方面
- 要对被评价对象做出整体性的评判,用一个总指标来说明被评价对象的一般水平
- 指标体系构建原则
- 系统全面性
- 稳定可比性
- 简明科学性
- 灵活操作性
- 指标体系的权重确定
- 指标的重要程度占指标群的比重
- 德尔菲法确定权重
- 专家对各个评价指标的重要程度进行评定
- 专家打分
- 层次分析法
- 指标之间两两比较出各自的相对重要程度,然后客观运算确定各评价指标权重
- 构造判断矩阵
- 各指标权数计算
- 判断矩阵一致性检验
- 指标之间两两比较出各自的相对重要程度,然后客观运算确定各评价指标权重
- 指标的无量纲化
- 标准化变换
- 规范化变换
- 功效系数变换
- 指数化变换
- 无量纲化使用
- 综合评分法
A=matrix(c(1,1/3,1/7,3,1,1/3,7,3,1),3,3)
A
#层次分析过程,一致性检验
A_W=msa.AHP(A)
A_W
#专利数据标准化
d13.1=read.table('clipboard',header = T)
zf<-function(x){ z=(x-min(x))/(max(x)-min(x))*60+40; z }
A1=d13.1[,1:6];A1 #提取前六个变量
A1_Z=apply(A1,2,zf); A1_Z
X_Z<-function(X){ #自编规格化变换函数
Z=apply(X,2,zf)
Z
}
A1_Z=X_Z(A1); A1_Z #对例题数据规格化变换
# 综合评分法 权重都为1
A1_S1=apply(A1_Z,1,mean)
A1_S1
cbind(A1_Z,A1_S1,A1_R1=rank(-A1_S1)) #按综合得分排名
#层次分析法
B1=matrix(c(1,4,5,3,6,7,1/4,1,2,1/2,3,4,1/5,1/2,1,1/3,2,3,1/3, 2, 3, 1, 4,5,
1/6,1/3,1/2,1/4,1,2,1/7,1/4,1/3,1/5,1/2,1),6,6,byrow=T); B1 #构造B1的判断矩阵
B1_W=msa.AHP(B1);B1_W #B1的权重
A1_S2=A1_Z%*%B1_W #层次法综合得分
data.frame(A1_Z,A1_S2,A1_R2=rank(-A1_S2)) #层次法综合排名
data.frame('综合评分'=A1_S1,'综合排名'=rank(-A1_S1),
'层次得分'=A1_S2,'层次排名'=rank(-A1_S2)) #构建综合得分和排名数据框
B2=matrix(c(1,4,5,7,8,9,1/4,1,2,4,5,6,1/5,1/2,1,3,4,5,1/7,1/4,1/3,1,2,3,1/8,1/5,
1/4,1/2,1,2,1/9,1/6,1/5,1/3,1/2,1),6,6,byrow=T); B2 #构造B2的判断矩阵
B2_W=msa.AHP(B2);B2_W #B2的权重
round(B2_W,4)
B3=matrix(c(1,5,2,6,2,6,1,1/5,1,1/4,2,1/4,2,0.2,1/2,5,1,5,1,5,1/2,1/6,1/2,1/5,
1,1/5,1,1/6,1/2,4,1,5,1,5,1/2,1/6,1/2,1/5,1,1/5,1,1/6,1,5,2,2,2,6,1),7,7,byrow=T)
#构造B3的判断矩阵
B3_W=msa.AHP(B3);B3_W #B3的权重
A2=d13.1[,8:13] #A2组数据
A3=d13.1[,14:20] #A3组数据
A2_S=X_Z(A2)%*%B2_W #A2得分
A3_S=X_Z(A3)%*%B3_W #A3得分
A_d=cbind(A1_S,A2_S,A3_S) #A数据框
A_S=A_d%*%A_W; A_S #A得分
data.frame('A1得分'=A1_S,'A1排名'=rank(-A1_S),'A2得分'=A2_S,'A2排名'=rank(-A2_S),
'A3得分'=A3_S,'A3排名'=rank(-A3_S),'综合得分'=A_S,'综合排名'=rank(-A_S)) #构建综合得分和排名数据框