统计推断(七) Typical Sequence

1. 一些定理

Markov inequality: r . v .    x ≥ 0 r.v. \ \ \mathsf{x}\ge0 r.v.  x0
P ( x ≥ μ ) ≤ E [ x ] μ \mathbb{P}(x\ge\mu)\le \frac{\mathbb{E}[x]}{\mu} P(xμ)μE[x]
Proof: omit…

Weak law of large numbers(WLLN): y ⃗ = [ y 1 , y 2 , . . . , y N ] T ,      y i ∼ p     i . i . d \vec{y}=[y_1,y_2,...,y_N]^T, \ \ \ \ y_i \sim p \ \ \ i.i.d y =[y1,y2,...,yN]T,    yip   i.i.d
lim ⁡ N → ∞ P ( ∣ L p ( y ⃗ ) + H ( p ) ∣ > ε ) = 0 ,    ∀ ε > 0 \lim_{N\to\infty}\mathbb{P}(|L_p(\vec{y})+H(p)|>\varepsilon)=0, \ \ \forall \varepsilon>0 NlimP(Lp(y )+H(p)>ε)=0,  ε>0
Proof: omit…

2. Typical set

  • Definition: T ε ( p ; N ) = { y ⃗ ∈ Y N : ∣ L p ( y ⃗ ) + H ( p ) ∣ < ε } \mathcal{T}_\varepsilon(p;N)=\{\vec{y}\in\mathcal{Y}^N:|L_p(\vec{y})+H(p)|<\varepsilon\} Tε(p;N)={y YN:Lp(y )+H(p)<ε}

  • Properties

    • WLLN ⟹ P ( y ⃗ ∈ T ε ( p ; N ) ) ≃ 1 \Longrightarrow P\left(\vec{y}\in\mathcal{T}_\varepsilon(p;N)\right)\simeq1 P(y Tε(p;N))1, N N N large
    • L p ( y ⃗ ) ≃ H ( p ) ⟹ p y ( y ⃗ ) ≃ 2 − N H ( p ) L_p(\vec{y})\simeq H(p) \Longrightarrow p_y(\vec{y})\simeq 2^{-NH(p)} Lp(y )H(p)py(y )2NH(p)
    • ⟹ ∣ T ε ( p ; N ) ∣ ≃ 2 N H ( p ) \Longrightarrow |\mathcal{T}_\varepsilon(p;N)|\simeq 2^{NH(p)} Tε(p;N)2NH(p)
    • 当 p 不是均匀分布的时候, ∣ T ε ( p ; N ) ∣ ∣ Y N ∣ → 0 \frac{|\mathcal{T}_\varepsilon(p;N)|}{|\mathcal{Y}^N|}\to0 YNTε(p;N)0,也就是说典型集中元素(序列)个数在所有可能的元素(序列)中所占比例趋于 0,但是典型集中元素概率的和却趋近于 1
  • Theorem

    Asymptotic Equipartition Property(AEP)

    lim ⁡ N → ∞ P ( T ε ( p ; N ) ) = 1 \lim_{N\to\infty}P(\mathcal{T}_\varepsilon(p;N))=1 \\ NlimP(Tε(p;N))=1

    2 − N ( H ( p ) + ϵ ) ≤ p y ( y ) ≤ 2 − N ( H ( p ) − ϵ ) , ∀ y ∈ T ϵ ( p ; N ) 2^{-N(H(p)+\epsilon)} \leq p_{\mathrm{y}}(\boldsymbol{y}) \leq 2^{-N(H(p)-\epsilon)}, \forall \boldsymbol{y} \in \mathcal{T}_{\epsilon}(p ; N) 2N(H(p)+ϵ)py(y)2N(H(p)ϵ),yTϵ(p;N)

    • for a sufficient large N N N

    ( 1 − ϵ ) 2 N ( H ( p ) − ϵ ) ≤ ∣ T ϵ ( p ; N ) ∣ ≤ 2 N ( H ( p ) + ϵ ) (1-\epsilon) 2^{N(H(p)-\epsilon)} \leq\left|\mathcal{T}_{\epsilon}(p ; N)\right| \leq 2^{N(H(p)+\epsilon)} (1ϵ)2N(H(p)ϵ)Tϵ(p;N)2N(H(p)+ϵ)

    Proof:
    ∣ T ϵ ( p ; N ) ∣ = ∑ y ∈ T ϵ ( p ; N ) 1 = 2 N ( H ( p ) + ϵ ) ∑ y ∈ T ϵ ( p ; N ) 2 − N ( H ( p ) + ϵ ) ≤ 2 N ( H ( p ) + ϵ ) ∑ y ∈ T ϵ ( p ; N ) p y ( y ) = 2 N ( H ( p ) + ϵ ) P { T ϵ ( p ; N ) } ≤ 2 N ( H ( p ) + ϵ ) \begin{aligned}\left|\mathcal{T}_{\epsilon}(p ; N)\right| &=\sum_{\boldsymbol{y} \in \mathcal{T}_{\epsilon}(p ; N)} 1 \\ &=2^{N(H(p)+\epsilon)} \sum_{\boldsymbol{y} \in \mathcal{T}_{\epsilon}(p ; N)} 2^{-N(H(p)+\epsilon)} \\ & \leq 2^{N(H(p)+\epsilon)} \sum_{\boldsymbol{y} \in \mathcal{T}_{\epsilon}(p ; N)} p_{\mathbf{y}}(\boldsymbol{y}) \\ &=2^{N(H(p)+\epsilon)} P\left\{\mathcal{T}_{\epsilon}(p ; N)\right\} \\ & \leq 2^{N(H(p)+\epsilon)} \end{aligned} Tϵ(p;N)=yTϵ(p;N)1=2N(H(p)+ϵ)yTϵ(p;N)2N(H(p)+ϵ)2N(H(p)+ϵ)yTϵ(p;N)py(y)=2N(H(p)+ϵ)P{Tϵ(p;N)}2N(H(p)+ϵ)
    typical_set

3. Divergence ε \varepsilon ε-typical set

  • WLLN: y ⃗ = [ y 1 , y 2 , . . . , y N ] T ,      y i ∼ p     i . i . d \vec{y}=[y_1,y_2,...,y_N]^T, \ \ \ \ y_i \sim p \ \ \ i.i.d y =[y1,y2,...,yN]T,    yip   i.i.d
    $$
    L_{p | q}(\boldsymbol{y})=\frac{1}{N} \log \frac{p_{\mathbf{y}}(\boldsymbol{y})}{q_{\mathbf{y}}(\boldsymbol{y})}=\frac{1}{N} \sum_{n=1}^{N} \log \frac{p\left(y_{n}\right)}{q\left(y_{n}\right)} \

    \lim {N \rightarrow \infty} \mathbb{P}\left(\left|L{p | q}(\boldsymbol{y})-D(p | q)\right|>\epsilon\right)=0
    $$
    Remarks: 前面只考虑的均值,这里还考虑了另一个分布

  • Definition: y ⃗ = [ y 1 , y 2 , . . . , y N ] T ,      y i ∼ p     i . i . d \vec{\boldsymbol{y}}=[y_1,y_2,...,y_N]^T, \ \ \ \ y_i \sim p \ \ \ i.i.d y =[y1,y2,...,yN]T,    yip   i.i.d
    T ϵ ( p ∣ q ; N ) = { y ∈ Y N : ∣ L p ∣ q ( y ) − D ( p ∥ q ) ∣ ≤ ϵ } \mathcal{T}_{\epsilon}(p | q ; N)=\left\{\boldsymbol{y} \in \mathcal{Y}^{N}:\left|L_{p | q}(\boldsymbol{y})-D(p \| q)\right| \leq \epsilon\right\} Tϵ(pq;N)={yYN:Lpq(y)D(pq)ϵ}

  • Properties

    • WLLN ⟹ q y ( y ) ≈ p y ( y ) 2 − N D ( p ∥ q ) \Longrightarrow q_{\mathbf{y}}(\boldsymbol{y}) \approx p_{\mathbf{y}}(\boldsymbol{y}) 2^{-N D(p \| q)} qy(y)py(y)2ND(pq)
    • Q { T ϵ ( p ∣ q ; N ) } ≈ 2 − N D ( p ∥ q ) → 0 Q\left\{\mathcal{T}_{\epsilon}(p | q ; N)\right\} \approx 2^{-N D(p \| q)} \to0 Q{Tϵ(pq;N)}2ND(pq)0
    • Remarks: p 的典型集可能是 q 的非典型集,在 N N N 很大的时候,不同分布的 typical set 是正交的
  • Theorem
    ( 1 − ϵ ) 2 − N ( D ( p ∥ q ) + ϵ ) ≤ Q { T ϵ ( p ∥ q ; N ) } ≤ 2 − N ( D ( p ∥ q ) − ϵ ) (1-\epsilon) 2^{-N(D(p \| q)+\epsilon)} \leq Q\left\{\mathcal{T}_{\epsilon}(p \| q ; N)\right\} \leq 2^{-N(D(p \| q)-\epsilon)} (1ϵ)2N(D(pq)+ϵ)Q{Tϵ(pq;N)}2N(D(pq)ϵ)

4. Large deviation of sample averages

Theorem (Cram´er’s Theorem): y ⃗ = [ y 1 , y 2 , . . . , y N ] T ,     y i ∼ q     i . i . d \vec{\boldsymbol{y}}=[y_1,y_2,...,y_N]^T, \ \ \ y_i \sim q \ \ \ i.i.d y =[y1,y2,...,yN]T,   yiq   i.i.d with mean μ < ∞ \mu<\infty μ< and γ > μ \gamma>\mu γ>μ
lim ⁡ N → ∞ − 1 N log ⁡ P ( 1 N ∑ n = 1 N y n ≥ γ ) = E C ( γ ) \lim _{N \rightarrow \infty}-\frac{1}{N} \log \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} y_{n} \geq \gamma\right)=E_{C}(\gamma) NlimN1logP(N1n=1Nynγ)=EC(γ)
where E C ( γ ) E_C(\gamma) EC(γ) is referred as Chernoff exponent
E C ( γ ) ≜ D ( p ( ⋅ ; x ) ∥ q ) ,     p ( ⋅ ; x ) = q ( y ) e x y − α ( x ) E_{C}(\gamma) \triangleq D(p(\cdot ; x) \| q),\ \ \ p(\cdot ; x)=q(y) e^{x y-\alpha(x)} EC(γ)D(p(;x)q),   p(;x)=q(y)exyα(x)
and with x > 0 x>0 x>0 chosen such that
E p ( ⋅ ; x ) [ y ] = γ \mathbb{E}_{p(\cdot;x)}[y]=\gamma Ep(;x)[y]=γ
Proof:

  1. P ( 1 N ∑ n = 1 N y n ≥ γ ) = P ( e x ∑ n = 1 N y n ≥ e N x γ ) ≤ e − N x γ E [ e x ∑ n = 1 N y n ] = e − N x γ ( E [ e x y ] ) N ≤ e − N ( x ∗ γ − α ( x ∗ ) ) \begin{aligned} \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} y_{n} \geq \gamma\right) &=\mathbb{P}\left(e^{x \sum_{n=1}^{N} y_{n}} \geq e^{N x \gamma}\right) \\ & \leq e^{-N x \gamma} \mathbb{E}\left[e^{x \sum_{n=1}^{N} y_{n}}\right] \\ &=e^{-N x \gamma}\left(\mathbb{E}\left[e^{x y}\right]\right)^{N} \\ & \leq e^{-N\left(x_{*} \gamma-\alpha\left(x_{*}\right)\right)} \end{aligned} P(N1n=1Nynγ)=P(exn=1NyneNxγ)eNxγE[exn=1Nyn]=eNxγ(E[exy])NeN(xγα(x))
  2. φ ( x ) = x γ − α ( x ) \varphi(x)=x\gamma-\alpha(x) φ(x)=xγα(x) 是凸的,最大值取在 E p ( ⋅ ; x ∗ ) [ y ] = α ˙ ( x ∗ ) = γ \mathbb{E}_{p\left(\cdot ; x_{*}\right)}[y]=\dot{\alpha}\left(x_{*}\right)=\gamma Ep(;x)[y]=α˙(x)=γ
  3. 可以证明 x ∗ γ − α ( x ∗ ) = x ∗ α ˙ ( x ∗ ) − α ( x ∗ ) = D ( p ( ⋅ ; x ∗ ) ∥ q ) x_{*} \gamma-\alpha\left(x_{*}\right)=x_{*} \dot{\alpha}\left(x_{*}\right)-\alpha\left(x_{*}\right)=D\left(p\left(\cdot ; x_{*}\right) \| q\right) xγα(x)=xα˙(x)α(x)=D(p(;x)q)
  4. 于是有 P ( 1 N ∑ n = 1 N y n ≥ γ ) ≤ e − N E C ( γ ) \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} y_{n} \geq \gamma\right) \leq e^{-N E_{C}(\gamma)} P(N1n=1Nynγ)eNEC(γ)
  5. 下界的证明,暂时略…

用到的两个事实: p ( y ; x ) = q ( y ) exp ⁡ ( x y − α ( x ) ) p(y;x)=q(y)\exp(xy-\alpha(x)) p(y;x)=q(y)exp(xyα(x))

  1. D ( p ( y ; x ) ∣ ∣ q ( y ) ) D(p(y;x)||q(y)) D(p(y;x)q(y)) 随着 x 单调增加
  2. E p ( ; x ) [ y ] \mathbb{E}_{p(;x)}[y] Ep(;x)[y] 随着 x 单调增加

Remarks:

  1. 这个定理也相当于表达了 P ( 1 N ∑ n = 1 N y n ≥ γ ) ≅ 2 − N E C ( γ ) \mathbb{P}\left(\frac{1}{N} \sum_{n=1}^{N} y_{n} \geq \gamma\right) \cong 2^{-N E_{\mathrm{C}}(\gamma)} P(N1n=1Nynγ)2NEC(γ)
  2. 相当于是分布 q 向由 E [ y ] = ∑ n = 1 N y n ≥ γ \mathbb{E}[y]=\sum_{n=1}^{N} y_{n} \geq \gamma E[y]=n=1Nynγ 所定义的一个凸集中投影,恰好投影到边界(线性分布族) E [ y ] = γ \mathbb{E}[y]=\gamma E[y]=γ 上,而 q q q 向线性分布族的投影恰好就是 (10) 中的指数族表达式

cramer_thm

5. Types and type classes

  • Definition: y ⃗ = [ y 1 , y 2 , . . . , y N ] T \vec{\boldsymbol{y}}=[y_1,y_2,...,y_N]^T y =[y1,y2,...,yN]T (不关心真实服从的是哪个分布)

    • type(实质上就是一个经验分布)定义为

    p ^ ( b ; y ) = 1 N ∑ n = 1 N 1 b ( y n ) = N b ( y ) N \hat{p}(b ; \mathbf{y})=\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{b}\left(y_{n}\right)=\frac{N_{b}(\mathbf{y})}{N} p^(b;y)=N1n=1N1b(yn)=NNb(y)

    • P N y \mathcal{P}_{N}^{y} PNy 表示长度为 N N N 的序列所有可能的 types
    • type class: T N y ( p ) = { y ∈ y N : p ^ ( ⋅ ; y ) ≡ p ( ⋅ ) } ,     p ∈ P N y \mathcal{T}_{N}^{y}(p)=\left\{\mathbf{y} \in y^{N}: \hat{p}(\cdot ; \mathbf{y}) \equiv p(\cdot)\right\},\ \ \ p\in\mathcal{P}_{N}^{y} TNy(p)={yyN:p^(;y)p()},   pPNy
  • Exponential Rate Notation: f ( N ) ≐ 2 N α f(N) \doteq 2^{N \alpha} f(N)2Nα
    lim ⁡ N → ∞ log ⁡ f ( N ) N = α \lim _{N \rightarrow \infty} \frac{\log f(N)}{N}=\alpha NlimNlogf(N)=α
    Remarks: α \alpha α 表示了指数上面关于 N N N 的阶数(log、线性、二次 …)

  • Properties

    • ∣ P N y ∣ ≤ ( N + 1 ) ∣ y ∣ \left|\mathcal{P}_{N}^{y}\right| \leq(N+1)^{|y|} PNy(N+1)y
    • q N ( y ) = 2 − N ( D ( p ^ ( ⋅ y ) ∥ q ) + H ( p ^ ( ⋅ ; y ) ) ) q^{N}(\mathbf{y})=2^{-N(D(\hat{p}(\cdot \mathbf{y}) \| q)+H(\hat{p}(\cdot ; \mathbf{y})))} qN(y)=2N(D(p^(y)q)+H(p^(;y)))
      p N ( y ) = 2 − N H ( p )  for  y ∈ T N y ( p ) p^{N}(\mathbf{y})=2^{-N H(p)} \quad \text { for } \mathbf{y} \in \mathcal{T}_{N}^{y}(p) pN(y)=2NH(p) for yTNy(p)
    • c N − ∣ y ∣ 2 N H ( p ) ≤ ∣ T N y ( p ) ∣ ≤ 2 N H ( p ) c N^{-|y|} 2^{N H(p)} \leq\left|\mathcal{T}_{N}^{y}(p)\right| \leq 2^{N H(p)} cNy2NH(p)TNy(p)2NH(p)
  • Theorem
    c N − ∣ y ∣ 2 − N D ( p ∥ q ) ≤ Q { T N y ( p ) } ≤ 2 − N D ( p ∥ q ) Q { T N y ( p ) } ≐ 2 − N D ( p ∥ q ) c N^{-|y|} 2^{-N D(p \| q)} \leq Q\left\{\mathcal{T}_{N}^{y}(p)\right\} \leq 2^{-N D(p \| q)} \\ Q\left\{\mathcal{T}_{N}^{y}(p)\right\} \doteq 2^{-N D(p \| q)} cNy2ND(pq)Q{TNy(p)}2ND(pq)Q{TNy(p)}2ND(pq)

6. Large Deviation Analysis via Types

  • Definition: R = { y ∈ y N : p ^ ( ⋅ ; y ) ∈ S ∩ P N y } \mathcal{R}=\left\{\mathbf{y} \in y^{N}: \hat{p}(\cdot ; \mathbf{y}) \in \mathcal{S} \cap \mathcal{P}_{N}^{y}\right\} R={yyN:p^(;y)SPNy}

Sanov’s Theorem:
Q { S ∩ P N y } ≤ ( N + 1 ) ∣ y ∣ 2 − N D ( p ∗ ∥ q ) Q { S ∩ P N y } ≤ ˙ 2 − N D ( p ∗ ∥ q ) p ∗ = arg ⁡ min ⁡ p ∈ S D ( p ∥ q ) Q\left\{\mathrm{S} \cap \mathcal{P}_{N}^{y}\right\} \leq(N+1)^{|y|} 2^{-N D\left(p_{*} \| q\right)} \\ Q\left\{\mathrm{S} \cap \mathcal{P}_{N}^{y}\right\} \dot\leq 2^{-N D\left(p_{*} \| q\right)} \\ p_{*}=\underset{p \in \mathcal{S}}{\arg \min } D(p \| q) Q{SPNy}(N+1)y2ND(pq)Q{SPNy}˙2ND(pq)p=pSargminD(pq)

7. Asymptotics of hypothesis testing

  • LRT: L ( y ) = 1 N log ⁡ p 1 N ( y ) p 0 N ( y ) = 1 N ∑ n = 1 N log ⁡ p 1 ( y n ) p 0 ( y n ) > < γ L(\boldsymbol{y})=\frac{1}{N} \log \frac{p_{1}^{N}(\boldsymbol{y})}{p_{0}^{N}(\boldsymbol{y})}=\frac{1}{N} \sum_{n=1}^{N} \log \frac{p_{1}\left(y_{n}\right)}{p_{0}\left(y_{n}\right)} \frac{>}{<} \gamma L(y)=N1logp0N(y)p1N(y)=N1n=1Nlogp0(yn)p1(yn)<>γ
  • P F = P 0 { 1 N ∑ n = 1 N t n ≥ γ } ≈ 2 − N D ( p ∗ ∥ p 0 ′ ) P_{F}=\mathbb{P}_{0}\left\{\frac{1}{N} \sum_{n=1}^{N} t_{n} \geq \gamma\right\} \approx 2^{-N D\left(p^{*} \| p_{0}^{\prime}\right)} PF=P0{N1n=1Ntnγ}2ND(pp0)
  • P M = 1 − P D ≈ 2 − N D ( p ∗ ∥ p 1 ′ ) P_{M}=1-P_{D} \approx 2^{-N D\left(p^{*} \| p_{1}^{\prime}\right)} PM=1PD2ND(pp1)
  • D ( p ∗ ∥ p 0 ′ ) − D ( p ∗ ∥ p 1 ′ ) = ∫ p ∗ ( t ) log ⁡ p 1 ′ ( t ) p 0 ′ ( t ) d t = ∫ p ∗ ( t ) t d t = E p ∗ [ t ] = γ D\left(p^{*} \| p_{0}^{\prime}\right)-D\left(p^{*} \| p_{1}^{\prime}\right)=\int p^{*}(t) \log \frac{p_{1}^{\prime}(t)}{p_{0}^{\prime}(t)} \mathrm{d} t=\int p^{*}(t) t \mathrm{d} t=\mathbb{E}_{p^{*}}[\mathrm{t}]=\gamma D(pp0)D(pp1)=p(t)logp0(t)p1(t)dt=p(t)tdt=Ep[t]=γ

asymptotic

8.Asymptotics of parameter estimation

Strong Law of Large Numbers(SLLN):
P ( lim ⁡ N → ∞ 1 N ∑ n = 1 N w n = μ ) = 1 \mathbb{P}\left(\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} w_{n}=\mu\right)=1 P(NlimN1n=1Nwn=μ)=1
Central Limit Theorem(CLT):
lim ⁡ N → ∞ P ( 1 N ∑ n = 1 N ( w n − μ σ ) ≤ b ) = Φ ( b ) \lim _{N \rightarrow \infty} \mathbb{P}\left(\frac{1}{\sqrt{N}} \sum_{n=1}^{N}\left(\frac{w_{n}-\mu}{\sigma}\right) \leq b\right)=\Phi(b) NlimP(N 1n=1N(σwnμ)b)=Φ(b)
以下三个强度依次递减

  1. 依概率 1 收敛(SLLN): x N ⟶ w . p . 1 a \mathsf{x}_{N} \stackrel{w . p .1}{\longrightarrow} a xNw.p.1a
  2. 概率趋于 0(WLLN):
  3. 依分布收敛: x N ⟶ d p \mathsf{x}_{N} \stackrel{d}{\longrightarrow} p xNdp
  • Asymptotics of ML Estimation

    Theorem:
    x ^ N = arg ⁡ max ⁡ x L N ( x ; y ) \hat{x}_{N}=\arg \max _{x} L_{N}(x ; \mathbf{y}) x^N=argxmaxLN(x;y)
    在满足某些条件下(mild conditions),有
    x ^ N ⟶ w ⋅ p ⋅ 1 x 0 N ( x ^ N − x 0 ) ⟶ d N ( 0 , J y ( x 0 ) − 1 ) \begin{array}{c}{\hat{x}_{N} \stackrel{w \cdot p \cdot 1}{\longrightarrow} x_{0}} \\ {\sqrt{N}\left(\hat{x}_{N}-x_{0}\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, J_{y}\left(x_{0}\right)^{-1}\right)}\end{array} x^Nwp1x0N (x^Nx0)dN(0,Jy(x0)1)


其他内容请看:
统计推断(一) Hypothesis Test
统计推断(二) Estimation Problem
统计推断(三) Exponential Family
统计推断(四) Information Geometry
统计推断(五) EM algorithm
统计推断(六) Modeling
统计推断(七) Typical Sequence
统计推断(八) Model Selection
统计推断(九) Graphical models
统计推断(十) Elimination algorithm
统计推断(十一) Sum-product algorithm

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值