1. Undirected graphical models(Markov random fields)
-
节点表示随机变量,边表示与节点相关的势函数
p x ( x ) ∝ φ 12 ( x 1 , x 2 ) φ 13 ( x 1 , x 3 ) φ 25 ( x 2 , x 5 ) φ 345 ( x 3 , x 4 , x 5 ) p_{\mathbf{x}}(\mathbf{x}) \propto \varphi_{12}\left(x_{1}, x_{2}\right) \varphi_{13}\left(x_{1}, x_{3}\right) \varphi_{25}\left(x_{2}, x_{5}\right) \varphi_{345}\left(x_{3}, x_{4}, x_{5}\right) px(x)∝φ12(x1,x2)φ13(x1,x3)φ25(x2,x5)φ345(x3,x4,x5)
-
clique:全连接的节点集合
-
maximal clique:不是其他 clique 的真子集
**Theorem (Hammersley-Clifford) **: A strictly positive distribution p x ( x ) > 0 p_{\mathsf{x}}(\mathbf{x})>0 px(