统计推断(九) Graphical models

1. Undirected graphical models(Markov random fields)

  • 节点表示随机变量,边表示与节点相关的势函数
    p x ( x ) ∝ φ 12 ( x 1 , x 2 ) φ 13 ( x 1 , x 3 ) φ 25 ( x 2 , x 5 ) φ 345 ( x 3 , x 4 , x 5 ) p_{\mathbf{x}}(\mathbf{x}) \propto \varphi_{12}\left(x_{1}, x_{2}\right) \varphi_{13}\left(x_{1}, x_{3}\right) \varphi_{25}\left(x_{2}, x_{5}\right) \varphi_{345}\left(x_{3}, x_{4}, x_{5}\right) px(x)φ12(x1,x2)φ13(x1,x3)φ25(x2,x5)φ345(x3,x4,x5)
    undirected_graph

  • clique:全连接的节点集合

  • maximal clique:不是其他 clique 的真子集

**Theorem (Hammersley-Clifford) **: A strictly positive distribution p x ( x ) > 0 p_{\mathsf{x}}(\mathbf{x})>0 px(

Lauritzen的图形模型是一种用于建模概率分布的统计工具,它能够有效地表示和推断随机变量之间的依赖关系。在图形模型中,随机变量被表示为节点,而变量之间的依赖关系则被表示为边。 Lauritzen的图形模型有两种主要类型:贝叶斯网络和马尔可夫网络。贝叶斯网络是一种有向图模型,其中节点表示随机变量,边表示变量之间的依赖关系,并且每个节点都与其父节点相关联。贝叶斯网络不仅可以表示变量之间的因果关系,还可以通过给定变量的条件分布来推断其他变量。 马尔可夫网络是一种无向图模型,其中节点表示随机变量,边表示变量之间的相关性。与贝叶斯网络不同,马尔可夫网络中的边没有方向,因此不存在因果关系。马尔可夫网络通过联合分布函数来表示变量之间的相关性,并且可以通过给定一部分变量来推断其他变量。 除了贝叶斯网络和马尔可夫网络,Lauritzen的图形模型还包括其他一些扩展和变体,例如隐马尔可夫模型和条件随机场。这些模型在不同的领域中都有广泛的应用,包括概率推断、模式识别、遗传学和自然语言处理等。 总之,Lauritzen的图形模型为我们建模和推断随机变量之间的依赖关系提供了一种直观、灵活且有效的方法。它在统计学和机器学习的领域中具有广泛的应用,并且有助于我们更好地理解和分析复杂的概率分布。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值