统计推断(十一) Sum-product algorithm

1. Sum-product(Message passing) on trees

  • 目的是为了计算边缘分布,相比于 elimination 的优势在于可以用较少的计算次数计算所有随机变量的边缘分布,关键在于复用 message

  • algorithm

    • Step 1: Compute messages
      m i → j ( x j ) = ∑ x i ϕ i ( x i ) ψ i j ( x i , x j ) ∏ k ∈ N ( i ) \ { j } m k → i ( x i ) m_{i \rightarrow j}\left(x_{j}\right)=\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(i) \backslash\{j\}} m_{k \rightarrow i}\left(x_{i}\right) mij(xj)=xiϕi(xi)ψij(xi,x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值