1. Sum-product(Message passing) on trees
-
目的是为了计算边缘分布,相比于 elimination 的优势在于可以用较少的计算次数计算所有随机变量的边缘分布,关键在于复用 message
-
algorithm
-
Step 1: Compute messages
m i → j ( x j ) = ∑ x i ϕ i ( x i ) ψ i j ( x i , x j ) ∏ k ∈ N ( i ) \ { j } m k → i ( x i ) m_{i \rightarrow j}\left(x_{j}\right)=\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(i) \backslash\{j\}} m_{k \rightarrow i}\left(x_{i}\right) mi→j(xj)=xi∑ϕi(xi)ψij(xi,x
-