模糊数学学习笔记 2:贴近度

个人博客地址 Glooow,欢迎光临~~~

1. 贴近度

给定 A , B , C ∈ F ( U ) A,B,C\in \mathcal{F}(U) A,B,CF(U) σ ( ∗ , ∗ ) \sigma(*,*) σ(,) 满足以下几个条件时,被称为贴近度

  1. σ ( A , A ) = 1 \sigma(A,A)=1 σ(A,A)=1
  2. σ ( A , B ) = σ ( B , A ) \sigma(A,B)=\sigma(B,A) σ(A,B)=σ(B,A)
  3. A ⊂ B ⊂ C A\subset B\subset C ABC,则 σ ( A , B ) ≥ σ ( A , C ) , σ ( B , C ) ≥ σ ( A , C ) \sigma(A,B)\ge\sigma(A,C),\sigma(B,C)\ge\sigma(A,C) σ(A,B)σ(A,C),σ(B,C)σ(A,C)
  4. σ ( U , ∅ ) = 0 \sigma(U,\varnothing)=0 σ(U,)=0

严格贴近度的定义为

  1. σ ( A , B ) = 1    ⟺    A = B \sigma(A,B)=1 \iff A=B σ(A,B)=1A=B
  2. 上述 2.-4. 条

贴近度的例子:

  • 严格贴近度: σ ( A , B ) = ∑ n a n ∧ b n ∑ n a n ∨ b n \sigma(A, B)=\frac{\sum_{n} a_{n} \wedge b_{n}}{\sum_n a_{n} \vee b_{n}} σ(A,B)=nanbnnanbn
  • σ ( A , B ) = 1 − t ( ∑ 1 n ∣ a k − b k ∣ p ) q \sigma(A, B)=1-t\left(\sum_{1}^{n}\left|a_{k}-b_{k}\right|^{p}\right)^{q} σ(A,B)=1t(1nakbkp)q
  • σ ( A , B ) = ∑ n a n ∧ b n ∑ n ( a n + b n ) / 2 \sigma(A, B)=\frac{\sum_{n} a_{n} \wedge b_{n}}{\sum_n (a_{n} + b_{n})/2} σ(A,B)=n(an+bn)/2nanbn
  • σ ( A , B ) = exp ⁡ ( − t ( ∑ 1 n ∣ a k − b k ∣ p ) q ) \sigma(A, B)=\exp\left(-t\left(\sum_{1}^{n}\left|a_{k}-b_{k}\right|^{p}\right)^{q}\right) σ(A,B)=exp(t(1nakbkp)q)

2. 内外积

2.1 定义

内积 A , B ∈ F ( U ) A,B\in\mathcal{F}(U) A,BF(U),称 A ∘ B = ∨ u ∈ U ( A ( u ) ∧ B ( u ) ) A\circ B=\underset{u \in U}{\vee}(A(u) \wedge B(u)) AB=uU(A(u)B(u)) A , B A,B A,B 的内积

外积 A , B ∈ F ( U ) A,B\in\mathcal{F}(U) A,BF(U),称 A ∘ ^ B = ∧ u ∈ U ( A ( u ) ∨ B ( u ) ) A \hat{\circ} B=\underset{u \in U}{\wedge}(A(u) \vee B(u)) A^B=uU(A(u)B(u)) A , B A,B A,B 的外积

Remarks:内外积本身并不是用来表述两个集合的相似程度的,就像向量的内外积,还与向量自身的模长有关。

2.2 性质

  • A ∘ ^ B = A c ∘ B c , ( A ∘ B ) c = A c ∘ ^ B c A \hat{\circ} B = A^c\circ B^c,(A\circ B)^c=A^c \hat{\circ} B^c A^B=AcBc,(AB)c=Ac^Bc
  • A ∘ B ≤ a ˉ ∧ b ˉ , A ∘ ^ B ≥ a ‾ ∨ b ‾ A {\circ} B\le \bar{a}\wedge\bar{b},A \hat{\circ} B\ge\underline{a}\vee\underline{b} ABaˉbˉ,A^Bab
  • A ∘ A = a ˉ , A ∘ ^ A = a ‾ A\circ A=\bar{a},A \hat{\circ} A=\underline{a} AA=aˉ,A^A=a
  • ∨ B ∈ F ( U ) ( A ∘ B ) = a ˉ , ∧ B ∈ F ( U ) ( A ∘ ^ B ) = a ‾ \underset{B \in \mathcal{F}(U)}{\vee}(A \circ B)=\bar{a}, \quad \underset{B \in \mathcal{F}(U)}{\wedge}\left(A {\hat{\circ}} B\right)=\underline{a} BF(U)(AB)=aˉ,BF(U)(A^B)=a
  • A ⊆ B ⇒ A ∘ B = a ˉ , A ∘ ^ B = b ‾ A \subseteq B \Rightarrow A \circ B=\bar{a}, A{\hat{\circ}} B=\underline{b} ABAB=aˉ,A^B=b
  • A ∘ A c ≤ 1 2 , A ∘ ^ B ≥ 1 2 A \circ A^{c} \leq \frac{1}{2}, \quad A{\hat{\circ}} B \geq \frac{1}{2} AAc21,A^B21
  • A ⊆ B ⇒ A ∘ C ≤ B ∘ C , A ∘ ^ C ≤ B o ^ C A \subseteq B \Rightarrow A \circ C \leq B \circ C, A{\hat{\circ}} C \leq B{\hat{o}} C ABACBC,A^CBo^C

3. 格贴近度

给定F集A,让F集B靠近A,会使内积增大而外积减少。即当内积较大且外积较小时,A与B比较贴近。 所以,以内外积相结合的“格贴近度”来刻 划两个F集的贴近程度。

格贴近度 N 1 ( A , B ) = ( A ∘ B ) ∧ ( A ∘ ^ B ) c N_{1}(A, B)=(A \circ B) \wedge\left(A\hat{\circ} B\right)^{c} N1(A,B)=(AB)(A^B)c

格贴近度有以下性质

  • 0 ≤ N 1 ( A , B ) ≤ 1 0\le N_1(A,B)\le1 0N1(A,B)1
  • N 1 ( A , B ) = N 1 ( B , A ) N_1(A,B)=N_1(B,A) N1(A,B)=N1(B,A)
  • N 1 ( A , A ) = a ˉ ∧ ( 1 − a ‾ ) N_1(A,A)=\bar{a}\wedge(1-\underline{a}) N1(A,A)=aˉ(1a)
  • A ⊆ B ⊆ C ⇒ N 1 ( A , C ) ≤ N 1 ( A , B ) ∧ N 1 ( B , C ) A \subseteq B \subseteq C \Rightarrow N_1(A, C) \leq N_1(A, B) \wedge N_1(B, C) ABCN1(A,C)N1(A,B)N1(B,C)

Remarks:注意根据第 3 条性质可知,格贴近度并不适合描述两个模糊集的相似程度,比如 N 1 ( U , U ) = 0 N_1(U,U)=0 N1(U,U)=0

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值