凸优化学习笔记 8:对数凸函数

文章目录

对数凹函数,顾名思义即取完对数以后 log ⁡ f ( x ) \log f(x) logf(x) 是凹函数,其应用比如在求最大后验 MAP 时,往往会对联合概率密度函数取对数。

1. 定义

函数 f f f 被称为对数凹函数(log-concave),如果 log ⁡ f \log f logf 是凹的,也即
f ( θ x + ( 1 − θ ) y ) ≥ f ( x ) θ f ( y ) 1 − θ f(\theta x+(1-\theta)y)\ge f(x)^\theta f(y)^{1-\theta} f(θx+(1θ)y)f(x)θf(y)1θ
对数凹函数的例子

  • 幂函数 x α x^\alpha xα
  • 正态分布
  • 高斯分布的累积分布 Φ ( x ) = 1 / 2 π ∫ − ∞ x e − u 2 / 2 d u \Phi(x)=1/\sqrt{2\pi}\int_{-\infty}^{x}e^{-u^2/2}du Φ(x)=1/2π
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值