泛函分析笔记5:Hahn-Banach定理的应用

1. 共轭算子

赋范空间 X , Y X,Y X,Y T ∈ B ( X , Y ) T\in B(X,Y) TB(X,Y),对于任意的 f ∈ Y ′ f\in Y' fY X ⟶ T Y ⟶ f K X \stackrel{T}{\longrightarrow}Y\stackrel{f}{\longrightarrow}\mathbb{K} XTYfK,可以得到 f ∘ T ∈ X ′ f\circ T\in X' fTX。因此我们可以定义映射
T × : Y ′ → X ′ f ↦ f ∘ T \begin{aligned} T^{\times}:Y' &\to X' \\ f &\mapsto f\circ T \end{aligned} T×:YfXfT
称其为共轭算子。他有如下性质(容易验证,不再证明):

  • T × ∈ B ( Y ′ , X ′ ) T^{\times}\in B(Y',X') T×B(Y,X)
  • ∥ T × ∥ = ∥ T ∥ \Vert T^{\times}\Vert=\Vert T\Vert T×=T(证明过程用到了 Hahn-Banach定理)
  • ( S + T ) × = S × + T × ,   S , T ∈ B ( X , Y ) (S+T)^{\times}=S^\times + T^\times,\ S,T\in B(X,Y) (S+T)×=S×+T×, S,TB(X,Y)
  • ( λ T ) × = λ T × (\lambda T)^\times=\lambda T^\times (λT)×=λT×
  • ( A B ) × = B × A × ,   A ∈ B ( X , Y ) , B ∈ B ( Y , Z ) (AB)^\times=B^\times A^\times,\ A\in B(X,Y),B\in B(Y,Z) (AB)×=B×A×, AB(X,Y),BB(Y,Z)

例子 1:设 X = Y = C n , T ∈ B ( C n , C n ) X=Y=\mathbb{C}^n,T\in B(\mathbb{C}^n,\mathbb{C}^n) X=Y=Cn,TB(Cn,Cn),则 ∃ ! A \exists!A !A n n n 阶方阵使得 T x = A x Tx=Ax Tx=Ax,而 T × ∈ B ( ( C n ) ′ , ( C n ) ′ ) T^\times\in B((\mathbb{C}^n)',(\mathbb{C}^n)') T×B((Cn),(Cn))。实际上 f ∈ ( C n ) ′ f\in(\mathbb{C}^n)' f(Cn) 可以表示为 f ( x ) = ∑ i n α i x i = α T x f(x)=\sum_i^n \alpha_i x_i=\alpha^T x f(x)=inαixi=αTx T × f ( x ) = ∑ i n β i x i = β T x T^\times f(x)=\sum_i^n\beta_i x_i=\beta^T x T×f(x)=inβixi=βTx。容易验证 β = A T α . \beta=A^T\alpha. β=ATα.

在这里,我们可以联想到伴随算子 T ∈ B ( H 1 , H 2 ) T\in B(H_1,H_2) TB(H1,H2),其伴随算子 T ⋆ ∈ B ( H 2 , H 1 ) T^\star\in B(H_2,H_1) TB(H2,H1) 满足 ⟨ T x , y ⟩ = ⟨ x , T ⋆ y ⟩ . \langle Tx,y\rangle=\langle x,T^\star y\rangle. Tx,y=x,Ty. 而这里的共轭算子则是 T × ∈ B ( H 2 ′ , H 1 ′ ) . T^\times\in B(H_2', H_1'). T×B(H2,H1).

回忆第二章我们讲等距同构概念的时候,提到了 ( K n , ∥ ⋅ ∥ 2 ) ′ = ( K n , ∥ ⋅ ∥ 2 ) (\mathbb{K}^n,\Vert\cdot\Vert_2)' = (\mathbb{K}^n,\Vert\cdot\Vert_2) (Kn,2)=(Kn,2),也就是说实际上我们可以找到某个映射 A : H ′ → H A:H'\to H A:HH。如果能找到这样的一个双射,就可以认为 T ⋆ T^\star T T × T^\times T× 是等价的。

一般的空间未必有如此良好的性质,但对于 Hilbert 空间来说,任意 f ∈ H ′ f\in H' fH 都可以唯一地表示为 f ( x ) = ⟨ x , z ⟩ , z ∈ H f(x)=\langle x,z\rangle, z\in H f(x)=x,z,zH,那么我们就可以定义映射
A : H ′ → H f ↦ z \begin{aligned} A:H' &\to H \\ f &\mapsto z \end{aligned} A:HfHz
容易证明 A A A共轭线性的(并且是双射),即 A ( λ f + μ g ) = λ ˉ A f + μ ˉ A g A(\lambda f+\mu g)=\bar{\lambda}Af+\bar{\mu}Ag A(λf+μg)=λˉAf+μˉAg

此时我们可以得到如下图所示的映射关系,可以看到实际上 T × = A 1 − 1 T ⋆ A 2 T^\times = A_1^{-1}T^\star A_2 T×=A11TA2

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yEKlB6g0-1609322243909)(https://raw.githubusercontent.com/Glooow1024/ImgHosting/master/hexo/2020/ch4-1-conjugate-operator.png)]

例子 2:考虑 Hilbert 空间 H 1 , H 2 H_1,H_2 H1,H2 g ∈ H 2 ′ g\in H_2' gH2 可以表示为 g ( y ) = ⟨ y , y 0 ⟩ g(y)=\langle y,y_0\rangle g(y)=y,y0,因此实际上有 A 2 g = y 0 ∈ H 2 A_2g=y_0\in H_2 A2g=y0H2,令 f = T × g ∈ H 1 ′ f=T^\times g\in H_1' f=T×gH1,因此可以表示为 f ( x ) = ⟨ x , x 0 ⟩ f(x)=\langle x,x_0\rangle f(x)=x,x0,这可以表示为 A 1 f = x 0 ∈ H 1 A_1f=x_0\in H_1 A1f=x0H1,因此有 A 1 T × g = x 0 A_1T^\times g=x_0 A1T×g=x0,结合 A 1 T × = T ⋆ A 2 A_1T^\times = T^\star A_2 A1T×=TA2 就有 x 0 = T ⋆ y 0 . x_0=T^\star y_0. x0=Ty0.

2. 自反空间

前面我们研究了 X X X X ′ X' X 的关系,当 X X X 为 Hilbert 空间时二者等距同构。这一小节我们想再研究研究 X X X X ′ ′ X'' X 的关系。为什么要研究他们的关系呢?因为不论原始空间 X X X 怎么样,对偶空间 X ′ X' X 总是 Banach 空间。友情提示,接下来这部分会比较绕。

2.1 典范映射

如果想要研究 X X X X ′ ′ X'' X 的关系,考虑映射 J : X → X ′ ′ J:X\to X'' J:XX,那么就需要考虑 J J J 是否是等距同构的,或者是否是单射、满射、双射?如何定义 J J J 呢?考虑 J ( x ) ∈ X ′ ′ J(x)\in X'' J(x)X,记 g x = J ( x ) : X ′ → K g_x=J(x): X'\to\mathbb{K} gx=J(x):XK,即
J : X → X ′ ′ x ↦ g x \begin{aligned} J:X&\to X'' \\ x&\mapsto g_x \end{aligned} J:XxXgx
那么对于任意 f ∈ X ′ f\in X' fX,定义 g x ( f ) = f ( x ) ∈ K g_x(f)=f(x)\in\mathbb{K} gx(f)=f(x)K,因此 ( J ( x ) ) ( f ) = f ( x ) (J(x))(f)=f(x) (J(x))(f)=f(x)。其中 x x x J J J 的自变量, J ( x ) J(x) J(x) 是一个泛函, f f f J ( x ) J(x) J(x) 的自变量。

首先来看按照上面的方法给出的 J J J 的定义是否满足 J : X → X ′ ′ . J:X\to X''. J:XX. 首先来看 J ( x ) = g x J(x)=g_x J(x)=gx 是否为 X ′ X' X 上的线性泛函? g x ( λ f + μ h ) = λ f ( x ) + μ h ( x ) = λ g x ( f ) + μ g x ( h ) g_x(\lambda f+\mu h)=\lambda f(x)+\mu h(x)=\lambda g_x(f)+\mu g_x(h) gx(λf+μh)=λf(x)+μh(x)=λgx(f)+μgx(h),因此 g x ∈ ( X ′ ) ⋆ g_x\in (X')^\star gx(X),接下来还需要验证 ∥ g x ∥ \Vert g_x\Vert gx 是否是有界的。
∥ g x ∥ = sup ⁡ f ∈ X ′ ∥ g x ( f ) ∥ ∥ f ∥ = sup ⁡ f ∈ X ′ ∣ f ( x ) ∣ ∥ f ∥ = ∥ x ∥ \Vert g_x\Vert = \sup_{f\in X'}\frac{\Vert g_x(f)\Vert}{\Vert f\Vert} = \sup_{f\in X'}\frac{|f(x)|}{\Vert f\Vert} = \Vert x\Vert gx=fXsupfgx(f)=fXsupff(x)=x
因此有 J ( x ) = g x ∈ X ′ ′ , ∀ x ∈ X J(x)=g_x\in X'',\forall x\in X J(x)=gxX,xX,说明我们定义的 J J J 确实是 X → X ′ ′ X\to X'' XX 的映射,我们称之为典范映射

那么这个映射有什么性质呢? J J J 是否为线性映射? g λ x + μ y = J ( λ x + μ y ) ∈ X ′ ′ g_{\lambda x+\mu y}=J(\lambda x+\mu y)\in X'' gλx+μy=J(λx+μy)X,对于 ∀ f ∈ X ′ \forall f\in X' fX,都有
g λ x + μ y ( f ) = f ( λ x + μ y ) = λ f ( x ) + μ g ( y ) = λ g x ( f ) + μ g y ( f ) ⟹ g λ x + μ y = λ g x + μ g y ⟹ J ( λ x + μ y ) = λ J ( x ) + μ J ( y ) g_{\lambda x+\mu y}(f)=f(\lambda x+\mu y)=\lambda f(x)+\mu g(y)=\lambda g_x(f)+\mu g_y(f) \\ \Longrightarrow g_{\lambda x+\mu y} = \lambda g_x+\mu g_y\\ \Longrightarrow J(\lambda x+\mu y) = \lambda J(x) + \mu J(y) gλx+μy(f)=f(λx+μy)=λf(x)+μg(y)=λgx(f)+μgy(f)gλx+μy=λgx+μgyJ(λx+μy)=λJ(x)+μJ(y)
这说明 J J J 是线性映射,那么 ∥ J ∥ \Vert J\Vert J 是多少?是否是有界线性映射?
∥ J ∥ = sup ⁡ x ∈ X ∥ J ( x ) ∥ ∥ x ∥ , ∥ J ( x ) ∥ = ∥ x ∥ \Vert J\Vert = \sup_{x\in X} \frac{\Vert J(x)\Vert}{\Vert x\Vert},\quad \Vert J(x)\Vert=\Vert x\Vert J=xXsupxJ(x),J(x)=x
因此 ∥ J ∥ = 1. \Vert J\Vert = 1. J=1.

由于任意 x ∈ X x\in X xX 都可以得到 J ( x ) ∈ X ′ ′ J(x)\in X'' J(x)X,因此 X X X 可以视为 X ′ ′ X'' X 的“赋范子空间”,也就是说 X X X 的势小于 X ′ ′ X'' X。那么是否有 X ′ ′ X'' X 的势就等于 X X X 的势呢?如果二者势相等,由于 J J J 是保范映射,就说明 X X X X ′ ′ X'' X 是等距同构的!但是遗憾的是并不是任意赋范空间 X X X 都有这个结论,只有某些条件下,比如 Hilbert 空间有这个性质。

J J J 为满射,则称 X X X自反空间(意味着 X X X X ′ ′ X'' X 等距同构),这有如下两种等价表示:
   ⟺    ∀ F ∈ X ′ ′ , ∃ ! x ∈ X , F = J ( x )    ⟺    ∀ F ∈ X ′ ′ , ∃ ! x ∈ X , F ( f ) = f ( x ) , ∀ f ∈ X ′ \begin{aligned} \iff& \forall F\in X'',\quad \exists! x\in X,\quad F=J(x) \\ \iff& \forall F\in X'',\quad \exists! x\in X,\quad F(f)=f(x),\forall f\in X' \end{aligned} FX,!xX,F=J(x)FX,!xX,F(f)=f(x),fX

如果 X X X 为自反的,由于 X ′ ′ X'' X 为 Banach 空间,那么 X X X 也是 Banach 空间。

命题:Hilbert 空间均为自反的。

证明:这个证明的思路非常巧妙!直接按照上面的定义来证明很难证出来。为此我们首先考虑 H ′ H' H,我们已经知道他是 Banach 空间了,但它实际上是一个 Hilbert 空间,怎么证明呢?

∀ f , g ∈ H ′ \forall f,g\in H' f,gH,我们前面提到 f ( x ) = ⟨ x , A f ⟩ , A f ∈ H f(x)=\langle x,Af\rangle, Af\in H f(x)=x,Af,AfH,因此定义
⟨ f , g ⟩ 1 = ⟨ A g , A f ⟩ \langle f,g\rangle_1 = \langle Ag, Af\rangle f,g1=Ag,Af
验证内积的定义可以证明 ⟨ ⋅ , ⋅ ⟩ 1 \langle \cdot,\cdot\rangle_1 ,1 就是 H ′ H' H 上的内积,因此 H ′ H' H 是 Hilbert 空间。这样的话就太好了,因为 ∀ F ∈ H ′ ′ \forall F\in H'' FH,都存在唯一的 f 0 ∈ H ′ f_0\in H' f0H,使得 F ( f ) = ⟨ f , f 0 ⟩ 1 = ⟨ A f 0 , A f ⟩ = f ( A f 0 ) F(f)=\langle f,f_0\rangle_1=\langle Af_0, Af\rangle=f(Af_0) F(f)=f,f01=Af0,Af=f(Af0)!因此 H H H 为自反空间。证毕。

例子 1:若 1 < p < ∞ 1<p<\infty 1<p< ℓ p \ell^p p 是自反的。

证明:我们首先知道 ( ℓ p ) ′ (\ell^p)' (p) ℓ q \ell^q q 是等距同构的,而 ( ℓ p ) ′ ′ = ( ℓ q ) ′ = ℓ p (\ell^p)''=(\ell^q)'=\ell^p (p)=(q)=p,因此 ℓ p \ell^p p 是自反的( 1 / p + 1 / q = 1 1/p+1/q=1 1/p+1/q=1)。

不过这个证明不太严谨,也可以利用自反空间的等价定义(跟上面的表述是等价的)。任意的 f ∈ ( ℓ p ) ′ f\in (\ell^p)' f(p),可以表示为 f ( x ) = ⟨ x , y ⟩ , x ∈ ℓ p , y ∈ ℓ q f(x)=\langle x,y\rangle,x\in\ell^p,y\in\ell^q f(x)=x,y,xp,yq,对任意的 F ∈ ( ℓ p ) ′ ′ F\in(\ell^p)'' F(p),现在问题来了, F ( f ) F(f) F(f) 是个什么东西?我们怎么定义 F ( f ) F(f) F(f) f f f 是一个函数,如何将其映射到 K \mathbb{K} K 上去呢?这是时候还是要应用等距同构的性质, ( ℓ p ) ′ (\ell^p)' (p) ℓ q \ell^q q 等距同构,因此我们可以用 y ∈ ℓ q y\in\ell^q yq 来等价的代替 f ∈ ( ℓ p ) ′ f\in(\ell^p)' f(p),这样的话 F ( f ) F(f) F(f) 就很容易定义了, F ( f ) ≜ F 1 ( y ) ∈ K F(f)\triangleq F_1(y)\in\mathbb{K} F(f)F1(y)K,那么我们就能找到唯一的 x 0 ∈ ℓ p x_0\in\ell^p x0p,使得 F 1 ( y ) = ⟨ y , x 0 ⟩ = ⟨ x 0 , y ⟩ = f ( x 0 ) F_1(y)=\langle y,x_0\rangle=\langle x_0,y\rangle=f(x_0) F1(y)=y,x0=x0,y=f(x0),这样的话任意 F ∈ ( ℓ p ) ′ ′ F\in (\ell^p)'' F(p),我们都能找到对应的唯一的 x 0 ∈ ℓ p x_0\in \ell^p x0p,使得 F ( f ) = f ( x 0 ) F(f)=f(x_0) F(f)=f(x0)。证毕。

例子 2:有限维赋范空间自反。

证明:假设 dim X = n < ∞ \text{dim}X=n<\infty dimX=n<,那么应用 Hamel 基的性质(参考教材例 2.5.3) dim X ⋆ = n \text{dim}X^\star=n dimX=n。再应用下面的引理(可参考第2章),可以知道有限维赋范空间的 X ′ = X ⋆ X'=X^\star X=X 等距同构,因此 dim X ′ = n \text{dim}X'=n dimX=n,因此也有 dim X ′ ′ = n \text{dim}X''=n dimX=n,因此 J : X → X ′ ′ J:X\to X'' J:XX 为满射, X X X 为自反的。证毕。

引理 X , Y X,Y X,Y K \mathbb{K} K 上的赋范空间,假设 dim X = n < ∞ \text{dim}X=n<\infty dimX=n< T : X → Y T:X\to Y T:XY 是线性算子,那么 T T T 一定是有界的。

2.2 可分性

研究集合的可分性,可以通过验证典范映射 J J J 是否为双射,也有另一个思路,就是下面要讲的可分性。

定理(Hahn-Banach) 5 ( X , ∥ ⋅ ∥ ) (X,\Vert\cdot\Vert) (X,) Y Y Y X X X 的线性子空间, Y ⊊ X Y\subsetneq X YX,对 ∀ x 0 ∈ Y c \forall x_0\in Y^c x0Yc,令
δ = ρ ( x 0 , Y ) = inf ⁡ y ∈ Y ∥ x 0 − y ∥ \delta = \rho(x_0,Y)=\inf_{y\in Y}\Vert x_0-y\Vert δ=ρ(x0,Y)=yYinfx0y
则存在 f ∈ X ′ f\in X' fX,使得 ∥ f ∥ = 1 , f ∣ Y = 0 , f ( x 0 ) = δ . \Vert f\Vert=1, f|_Y=0,f(x_0)=\delta. f=1,fY=0,f(x0)=δ.

NOTE:这个定理在说什么事呢?前面在讲内积空间的时候,我们提到了 Hilbert 空间上的有界线性泛函实际上可以表示为 f ( x ) = ⟨ x , z 0 ⟩ f(x)=\langle x,z_0\rangle f(x)=x,z0,这实际上可以看成是以 z 0 z_0 z0 为法向量的超平面,因此 N ( f ) ⊥ N(f)^{\perp} N(f) 是一维的,也就是说 f f f z 0 z_0 z0 方向上是非零的,在正交于 z 0 z_0 z0 的平面内都是 0。而这个定理当中,寻找这个 f f f 要做的就是找到一个合适的法向量,使得 z 0 ⊥ Y z_0\perp Y z0Y,并且添加一个线性系数使得刚好有 f ( x 0 ) = δ f(x_0)=\delta f(x0)=δ。不过这个定理更加强大的一个地方在于不要求 X X X 是 Hilbert 空间,只要求赋范空间即可。

证明:考虑 M = span ( Y ∪ { x 0 } ) M=\text{span}(Y\cup \{x_0\}) M=span(Y{x0}) X X X 的线性子空间,则 ∀ x ∈ M \forall x\in M xM,存在唯一的分解方式 x = y + λ x 0 x=y+\lambda x_0 x=y+λx0 y ∈ Y , λ ∈ K y\in Y,\lambda\in\mathbb{K} yY,λK,定义 f 0 ( x ) = λ δ . f_0(x)=\lambda \delta. f0(x)=λδ. 容易验证 f 0 ∈ M ′ , ∥ f 0 ∥ ≤ 1 f_0\in M', \Vert f_0\Vert\le1 f0M,f01,也可以验证 ∥ f 0 ∥ ≥ 1 \Vert f_0\Vert \ge1 f01(需要思考一下)。因此存在 f ∈ X ′ f\in X' fX 使得 ∥ f ∥ = ∥ f 0 ∥ \Vert f\Vert=\Vert f_0\Vert f=f0 f ∣ Y = f 0 ∣ Y = 0 f|_Y=f_0|_Y=0 fY=f0Y=0,并且 f ( x 0 ) = f 0 ( x 0 ) = δ . f(x_0)=f_0(x_0)=\delta. f(x0)=f0(x0)=δ. 证毕。

推论 ( X , ∥ ⋅ ∥ ) (X,\Vert\cdot\Vert) (X,),若 X ′ X' X 为可分空间,则 X X X 为可分空间。

NOTE:这个推论可用于证明某个空间不是自反空间:如果 X X X 可分,但是 X ’ X’ X 不可分,那么 X X X 一定不自反。否则的话 X ′ ′ = X X''=X X=X 是可分的,应该有 X ′ X' X 也是可分的,矛盾。

证明: 参考教材,略。

例子 3 c o ,   ℓ 1 ,   ℓ ∞ ,   C [ a , b ] c_o,\ \ell^1,\ \ell^\infty,\ C[a,b] co, 1, , C[a,b] 都不是自反空间。

证明 c 0 ′ = ℓ 1 , ( ℓ 1 ) ′ = ℓ ∞ , ( ℓ ∞ ) ′ = ℓ 1 c_0'=\ell^1,(\ell^1)'=\ell^\infty, (\ell^\infty)'=\ell^1 c0=1,(1)=,()=1(参考课本 P68),但是由于 c 0 , ℓ 1 c_0,\ell^1 c0,1 是可分的,而 ℓ ∞ \ell^\infty 不是可分的,因此 ℓ 1 \ell^1 1 不自反。

C [ a , b ] ′ C[a,b]' C[a,b] 是不可分的, C [ a , b ] C[a,b] C[a,b] 是可分的, 细节参考课本,懒得写了…后面心情好了再补吧…

3. Riemann-Stieltjes积分

称函数 ω : [ a , b ] → K \omega:[a,b]\to\mathbb{K} ω:[a,b]K有界变差函数,若存在常数 C ≥ 0 C\ge0 C0,使得任取 [ a , b ] [a,b] [a,b] 的分划
a = t 0 < t 1 < ⋯ < t n = b a=t_0<t_1<\cdots<t_n=b a=t0<t1<<tn=b
都有 ∑ i = 1 n ∣ ω ( t i ) − ω ( t i − 1 ) ∣ ≤ C \sum_{i=1}^n |\omega(t_i)-\omega(t_{i-1})|\le C i=1nω(ti)ω(ti1)C。记所有 [ a , b ] [a,b] [a,b] 上的有界变差函数构成的集合为 B V [ a , b ] BV[a,b] BV[a,b]。并定义 [ a , s ] , a ≤ s ≤ b [a,s],a\le s\le b [a,s],asb 上的全变差
Var [ a , s ] ( ω ) = sup ⁡ ∑ i = 1 n ∣ ω ( t i ) − ω ( t i − 1 ) ∣ \text{Var}_{[a,s]}(\omega)=\sup\sum_{i=1}^n |\omega(t_i)-\omega(t_{i-1})| Var[a,s](ω)=supi=1nω(ti)ω(ti1)
其中上确界是对所有 [ a , s ] [a,s] [a,s] 上的分划来取。

命题:若 ω : [ a , b ] → R \omega:[a,b]\to\mathbb{R} ω:[a,b]R 单调,则 ω ∈ B V [ a , b ] \omega\in BV[a,b] ωBV[a,b],并且此时有 Var [ a , b ] ( ω ) = ∣ ω ( b ) − ω ( a ) ∣ . \text{Var}_{[a,b]}(\omega)=|\omega(b)-\omega(a)|. Var[a,b](ω)=ω(b)ω(a).

命题:若 ω : [ a , b ] → R \omega:[a,b]\to \mathbb{R} ω:[a,b]R 为有界变差的,则存在 ω 1 , ω 2 \omega_1,\omega_2 ω1,ω2 单调递增,使得 ω = ω 1 − ω 2 . \omega=\omega_1-\omega_2. ω=ω1ω2.

证明:取 ω 1 ( t ) = Var [ a , t ] ( ω ) \omega_1(t)=\text{Var}_{[a,t]}(\omega) ω1(t)=Var[a,t](ω),那么易证 ω 1 \omega_1 ω1 是单调递增的。取 ω 2 = ω − ω 1 \omega_2=\omega-\omega_1 ω2=ωω1 也是递增的,这是因为 ∀ t < s \forall t<s t<s t , x ∈ [ a , b ] t,x\in[a,b] t,x[a,b] 都有
ω 2 ( s ) − ω 2 ( t ) = Var [ a , s ] ( ω ) − Var [ a , t ] ( ω ) − ω ( s ) + ω ( t ) = Var [ t , s ] ( ω ) − ( ω ( s ) − ω ( t ) ) ≥ 0 \begin{aligned} \omega_2(s)-\omega_2(t) &=\text{Var}_{[a,s]}(\omega)-\text{Var}_{[a,t]}(\omega)-\omega(s)+\omega(t) \\ &=\text{Var}_{[t,s]}(\omega)-(\omega(s)-\omega(t)) \ge 0 \end{aligned} ω2(s)ω2(t)=Var[a,s](ω)Var[a,t](ω)ω(s)+ω(t)=Var[t,s](ω)(ω(s)ω(t))0
其中第二个等号用到了下面的引理。

引理 Var [ a , s ] ( ω ) = Var [ a , t ] ( ω ) + Var [ t , s ] ( ω ) . \text{Var}_{[a,s]}(\omega)=\text{Var}_{[a,t]}(\omega)+\text{Var}_{[t,s]}(\omega). Var[a,s](ω)=Var[a,t](ω)+Var[t,s](ω).

证明:略。

B V [ a , b ] BV[a,b] BV[a,b] 上定义范数 ∥ ω ∥ b v = Var [ a , b ] ( ω ) + ∣ ω ( a ) ∣ \Vert \omega\Vert_{bv}=\text{Var}_{[a,b]}(\omega)+|\omega(a)| ωbv=Var[a,b](ω)+ω(a),则可以证明 ∥ ⋅ ∥ b v \Vert\cdot\Vert_{bv} bv B V [ a , b ] BV[a,b] BV[a,b] 上的范数,并且 B V [ a , b ] BV[a,b] BV[a,b] 为 Banach 空间。

∀ ω ∈ B V [ a , b ] , x ∈ C [ a , b ] \forall \omega\in BV[a,b], x\in C[a,b] ωBV[a,b],xC[a,b],若 P \mathcal{P} P [ a , b ] [a,b] [a,b] 的分划 a = t 0 < t 1 < ⋯ < t n = b a=t_0<t_1<\cdots<t_n=b a=t0<t1<<tn=b,令
S ( x , ω , P ) = ∑ i = 1 n x ( t i − 1 ) ( ω ( t i ) − ω ( t i − 1 ) ) S(x,\omega,\mathcal{P})=\sum_{i=1}^n x(t_{i-1})(\omega(t_i)-\omega(t_{i-1})) S(x,ω,P)=i=1nx(ti1)(ω(ti)ω(ti1))
x x x 关于有界变差函数 ω \omega ω 和分划 P \mathcal{P} P 的 Darboux 和。记 η ( P ) = max ⁡ i ( t i − t i − 1 ) → 0 \eta(\mathcal{P})=\max_i (t_i-t_{i-1}) \to 0 η(P)=maxi(titi1)0,若存在唯一的 A ∈ K A\in\mathbb{K} AK 使得 S ( x , ω , P ) → A S(x,\omega,\mathcal{P})\to A S(x,ω,P)A,则称 A A A x x x 关于 ω \omega ω 的 Riemann-Stieltjes 积分,记为
A = ∫ a b x ( t ) d ω ( t ) . A = \int_a^b x(t)d\omega(t). A=abx(t)dω(t).
定义线性泛函 ϕ ω : C [ a , b ] → K \phi_{\omega}:C[a,b]\to\mathbb{K} ϕω:C[a,b]K
ϕ ω ( x ) = ∫ a b x ( t ) d ω ( t ) \phi_\omega(x)=\int_a^b x(t)d\omega(t) ϕω(x)=abx(t)dω(t)
ϕ ω ∈ C [ a , b ] ′ \phi_\omega\in C[a,b]' ϕωC[a,b],并且有 ∥ ϕ ω ∥ ≤ Var [ a , b ] ( ω ) \Vert \phi_\omega\Vert\le \text{Var}_{[a,b]}(\omega) ϕωVar[a,b](ω)

定理 ∀ ϕ ∈ C [ a , b ] ′ \forall \phi\in C[a,b]' ϕC[a,b] ∃ ! ω ∈ B V [ a , b ] \exists! \omega\in BV[a,b] !ωBV[a,b],满足 ω ( a ) = 0 \omega(a)=0 ω(a)=0 ∀ x ∈ C [ a , b ] \forall x\in C[a,b] xC[a,b] ϕ ( x ) = ∫ a b x ( t ) d ω ( t ) \phi(x)=\int_a^b x(t)d\omega(t) ϕ(x)=abx(t)dω(t),此时有 ∥ ϕ ∥ = ∥ ω ∥ b v . \Vert \phi\Vert=\Vert\omega\Vert_{bv}. ϕ=ωbv.

证明:略。

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
泛函分析笔记 0:绪论
泛函分析笔记 1:度量空间
泛函分析笔记 2:赋范空间
泛函分析笔记 3:内积空间
泛函分析笔记 4:Hahn-Banach定理
泛函分析笔记 5:Hahn-Banach定理的应用

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值