卷积计算量指标: Parameters, MAC, FLOPs

  • 参数量(Parameters)
  • 计算量,乘加次数 (Multiply Accumulate)
  • FLOPs (Floating Point Operations)

涉及标识:
Hin, Win : 输入图片高,宽
Hout, Wout : 输出图片高,宽
HK, WK : 卷积核高,宽
Cin :输入图片特征通道
Cout : 输出图片特征通道

知识点
根据Andrew Ng的讲解,重点理解Cout,Cout是根据卷积核的数量来决定的,每个卷积核自身有多少层是根据Cin来的,也就是上一层的Cout

图1
如上图,Cin根据原始输入图片有RGB,3个Channels。此时单个卷积核会有 Cin 层,也就是3层。如果不增加卷积核数量,则输出为 Cout 为1。

图2
接着上图我们增加卷积核的数量,假设我们需要2个卷积核。那么最终 Cout 输出即为2。Cout 可以理解为卷积核的个数。这里我们没有考虑Bias,但只要记住每个卷积核,也就例如图1中一个 (3x3x3) 对应1个Bias即可。

参数量

输入为(Hin, Win),输出为(Hout, Wout)不考虑补0

  1. 考虑Bias:(Cin * HK * WK +1)* Cout
  2. 不考虑Bias:(Cin * HK * WK )* Cout

计算量 (MAC)

  1. 考虑Bias:(Cin * HK * WK )* Cout * (Hout, Wout

  2. 不考虑Bias:(Cin * HK * WK - 1)* Cout * (Hout, Wout

FLOPs

  1. 考虑Bias:(2 * Cin * HK * WK)* Cout * (Hout, Wout

  2. 不考虑Bias:(2 * Cin * HK * WK - 1)* Cout * (Hout, Wout

注:

1.这里计算FLOPs和MAC的时候只乘以一个(Hout, Wout)是因为权值共享,所以只需乘以一个输出特征图大小。

PS: 全连接参数考虑Bias = Neuronin * Neuronout + Neuronout

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值