ROC FROC SROC曲线

ROC曲线是衡量分类模型性能的图形化方法,展示了真正率和假正率之间的平衡。FROC适用于多异常图像评价,SROC用于多个试验的Meta分析集成,LROC则针对ROC曲线的特定段进行比较。好的模型应在ROC曲线的左上角,AUC值接近1表示模型性能优秀。
摘要由CSDN通过智能技术生成

1. ROC曲线

ROC(Receiver Operating Characteristic Curves)曲线是显示Classification模型真正率假正率之间折中的一种图形化方法。

解读ROC图的一些概念定义::
真正(True Positive , TP)被模型预测为正的正样本;
假负(False Negative , FN)被模型预测为负的正样本;
假正(False Positive , FP)被模型预测为正的负样本;
真负(True Negative , TN)被模型预测为负的负样本。

真正率(True Positive Rate , TPR)或灵敏度(sensitivity)
TPR = TP /(TP + FN) (正样本预测结果数 / 正样本实际数)
假负率(False Negative Rate , FNR)
FNR = FN /(TP + FN) (被预测为负的正样本结果数 / 正样本实际数 )
假正率(False Positive Rate , FPR)
FPR = FP /(FP + TN) (被预测为正的负样本结果数 /负样本实际数)
真负率(True Negative Rate , TNR)或特指度(specificity)
TNR = TN /ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值