Qwen2-VL 模型介绍
Qwen2-VL拥有三个参数量分别为 20亿、70 亿和 720 亿的模型。本仓库包含经过指令调优的 7B Qwen2-VL 模型。
评估结果
图像基准测试
基准 | InternVL2-8B | MiniCPM-V 2.6 | GPT-4o-mini | Qwen2-VL-7B |
---|---|---|---|---|
MMMUval | 51.8 | 49.8 | 60 | 54.1 |
DocVQAtest | 91.6 | 90.8 | - | 94.5 |
InfoVQAtest | 74.8 | - | - | 76.5 |
ChartQAtest | 83.3 | - | - | 83.0 |
TextVQAval | 77.4 | 80.1 | - | 84.3 |
OCRBench | 794 | 852 | 785 | 845 |
MTVQA | - | - | - | 26.3 |
RealWorldQA | 64.4 | - | - | 70.1 |
MMEsum | 2210.3 | 2348.4 | 2003.4 | 2326.8 |
MMBench-ENtest | 81.7 | - | - | 83.0 |
MMBench-CNtest | 81.2 | - | - | 80.5 |
MMBench-V1.1test | 79.4 | 78.0 | 76.0 | 80.7 |
MMT-Benchtest | - | - | - | 63.7 |
MMStar | 61.5 | 57.5 | 54.8 | 60.7 |
MMVetGPT-4-Turbo | 54.2 | 60.0 | 66.9 | 62.0 |
HallBenchavg | 45.2 | 48.1 | 46.1 | 50.6 |
MathVistatestmini | 58.3 | 60.6 | 52.4 | 58.2 |
MathVision | - | - | - | 16.3 |
视频基准测试
基准 | Internvl2-8B | LLaVA-OneVision-7B | MiniCPM-V 2.6 | Qwen2-VL-7B |
---|---|---|---|---|
MVBench | 66.4 | 56.7 | - | 67.0 |
PerceptionTesttest | - | 57.1 | - | 62.3 |
EgoSchematest | - | 60.1 | - | 66.7 |
Video-MMEwo/w subs | 54.0/56.9 | 58.2/- | 60.9/63.6 | 63.3/69.0 |
使用要求
Qwen2-VL 的代码已包含在最新的 Hugging Face Transformers 中,建议您通过以下命令从源代码构建:
pip install git+https://github.com/huggingface/transformers
避免出现以下错误:
KeyError: 'qwen2_vl'
快速入门
我们提供了一个工具包,帮助您更方便地处理各种类型的视觉输入,支持 base64、URLs 和交错的图像与视频。安装命令如下:
pip install qwen-vl-utils
以下是如何使用 transformers 和 qwen_vl_utils 的代码示例:
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
from modelscope import snapshot_download
model_dir = snapshot_download("qwen/Qwen2-VL-7B-Instruct")
# 默认:在可用设备上加载模型
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_dir, torch_dtype="auto", device_map="auto"
)
# 默认处理器
processor = AutoProcessor.from_pretrained(model_dir)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "描述这个图像。"},
],
}
]
# 准备推理
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# 推理:生成输出
generated_ids = model.generate(**inputs, max_new_tokens=128)
output_text = processor.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
更多使用技巧
输入图像支持
我们支持本地文件、base64 和 URLs 输入图像。对于视频,我们当前仅支持本地文件。
图像分辨率以提高性能
模型支持广泛的分辨率输入。默认使用输入的原生分辨率,但更高的分辨率可能提升性能。用户可以设置最小和最大像素数以实现最佳配置。
限制
尽管 Qwen2-VL 可应用于多种视觉任务,但了解其限制同样重要:
- 缺乏音频支持:当前模型无法理解视频中的音频信息。
- 数据时效性:我们的图像数据集更新至 2023 年 6 月,之后的信息可能未被覆盖。
- 个人和知识产权限制:模型对特定个体或知识产权的识别能力有限,可能无法全面覆盖所有知名人士或品牌。
- 复杂指令的理解能力不足:面对复杂的多步骤指令,模型的理解和执行能力需要提升。
- 计数准确性不足:在复杂场景中,物体计数的准确性较低。
- 空间推理能力弱:特别是在三维空间中,模型对物体位置关系的推断不足。
这些限制为模型的优化和改进提供了持续的方向,我们承诺不断提升模型的性能和应用范围。
在 RTX 4090 上的实测
设备基础环境介绍
操作系统: Ubuntu 22.04
软件环境:
PyTorch:2.3.0
Python:3.12
硬件环境:
GPU:RTX 4090D(24GB)* 1
CPU:15 vCPU Intel® Xeon® Platinum 8474C
内存:80GB (实测峰值内存20G占用)
硬盘:
系统盘:30 GB
数据盘:50GB
在使用 RTX 4090 进行 Qwen2-VL 模型推理时,遇到了显存溢出的问题。为了解决这一挑战,我采取了一些措施,使模型勉强能够在这台显卡上运行。
首先,安装了 flash-attn
以优化显存使用,命令如下:
pip install flash-attn --no-build-isolation
接着,使用以下代码加载模型:
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
from modelscope import snapshot_download
import torch
model_dir = snapshot_download("qwen/Qwen2-VL-7B-Instruct")
# 启用 Flash Attention 以提升速度和节省显存
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_dir,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
# 默认处理器
processor = AutoProcessor.from_pretrained(model_dir)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "描述这个图像。"},
],
}
]
# 准备推理
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# 推理:生成输出
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
通过这些设置,成功在 RTX 4090 上运行了 Qwen2-VL 模型,并生成了期望的输出。这些优化措施使得显存的使用得到了有效控制,提高了模型的运行效率。
单线程进行一次生成速度测试
from tqdm import tqdm
for i in tqdm(range(100)):
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# print(output_text)
测试结果
100%|██████████| 100/100 [06:09<00:00, 3.69s/it]