线性代数MIT 18.06 记录(六)列空间和零空间

列空间

回顾,在子空间必须满足的条件:

  • 保证加和乘的封闭性

观察一:

  • 任意子向量空间的交集也都是子向量空间

列空间举例

在这里插入图片描述
显然,这个矩阵的三个列向量组成的列向量空间是 R 4 R^4 R4 空间的子向量空间

这里我们可以联系到线性方程:

是否对每一个b A x = b Ax = b Ax=b 都有解呢?
或者说,什么样的b 可以让方程有解呢?

在这里插入图片描述
首先第一个问题的答案是,在于:
3个列向量的线性组合无法充满整个四维空间
第二个问题,老师是这样讲的:
当且仅当 b b b A A A 的 列向量的线性组合种,方程组 A x = b Ax = b Ax=b 才有解

这里也引出了线性相关的概念,我们可以看到,第三列是第一列和第二列的和,它并没有为线性组合做出任何贡献,所以它和前两个不是线性独立的。
最后我们知道 A矩阵的列向量子空间是 R 4 R^4 R4 中 的二维子空间

零空间(null space)

在这里插入图片描述
定义是:

  • 所有可以使得方程组 A x = b Ax = b Ax=b 成立的 X X X 即为A的零向量空间

具体到例子上,是这样的
在这里插入图片描述

首先,零空间肯定有一个零向量,综合起来就是这样一个解
c ∗ [ 1 1 − 1 ] (3) c * \left[ \begin{matrix} 1 \\ 1 \\ -1 \end{matrix} \right] \tag{3} c111(3)

这样我们就知道 对于这个 A A A ,它的零空间就是 R 3 R^3 R3 中的一条直线

证明

但是为什么这样可以得到一个零空间呢?
我们需要证明:
i f if if A v = 0 Av = 0 Av=0  and   A w = 0 Aw=0 Aw=0 t h e n then then A ( v + w ) = 0 A(v+w)=0 A(v+w)=0
一写出来,就发现还是很简单,就是一个分配律就解决了

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值