Tensorflow Wide and Deep模型实现多分类

本文主要记录了使用TensorFlow实现Wide & Deep模型进行多分类任务的过程,包括数据预处理的重要调整和模型的基本原理。
摘要由CSDN通过智能技术生成

改数据形式问题改了半天。。。

要了解原理的朋友出门右转:TensorFlow Wide And Deep 模型详解与应用

# coding = gbk
"""Example code for TensorFlow Wide & Deep Tutorial using TF.Learn API."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import shutil
import sys
import tempfile

import pandas as pd
from six.moves import urllib
import tensorflow as tf

CSV_COLUMNS = [
    "jing", "ceng", "y", "DEPTH", "AC",
    "SP", "GR", "CAL", "RT"
]

# To show an example of hashing:
jing = tf.feature_column.categorical_column_with_hash_bucket(
    "jing", hash_bucket_size=350)
ceng = tf.feature_column.categorical_column_with_hash_bucket(
    'ceng', hash_bucket_size=350)

# Continuous base columns.
DEPTH = tf.feature_column.numeric_column("DEPTH")
AC = tf.feature_column.numeric_column("AC")
SP = tf.feature_column.numeric_column("SP")
GR = tf.feature_column.numeric_column("GR")
CAL = tf.feature_column.numeric_column("CAL")
RT = tf.feature_column.numeric_column('RT')

# Transformations.
depth_buckets = tf.feature_column.bucketized_column(
    DEPTH, boundaries=[300, 800, 1300, 1800, 2300, 2800, 3300, 3800])

# Wide columns and deep columns.
base_column
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值