机器学习:判别模型,生成模型,朴素贝叶斯,高斯生成模型

本文介绍了判别模型与生成模型的区别,重点讨论了高斯判别分析(GDA)的原理和应用。GDA是一种假设输入特征符合多变量正态分布的模型,与logistic回归存在联系。同时,文章提到了朴素贝叶斯模型在处理离散特征时的应用,并讨论了解决数据稀疏问题的拉普拉斯平滑方法。
摘要由CSDN通过智能技术生成

判别、生成区别:http://blog.sciencenet.cn/home.php?mod=space&uid=248173&do=blog&id=227964

朴素贝叶斯和高斯判别分析:https://www.cnblogs.com/zyber/p/6490663.html

一:判别、生成

1、 生成模型:无穷样本==》概率密度模型 = 产生模型==》预测:隐马尔科夫模型、朴素贝叶斯模型、高斯混合模型、LDA、Restricted Boltzmann Machine等,求的是联合概率
2、 判别模型:有限样本==》判别函数 = 预测模型==》预测 :线性回归、对数回归、线性判别分析、支持向量机、boosting、条件随机场、神经网络等。 求的是条件概率

概要:简单的说,假设o是观察值,q是模型。
如果对P(o|q)建模,就是Generative模型。其基本思想是首先建立样本的概率密度模型,再利用模型进行推理预测。要求已知样本无穷或尽可能的大限制。
这种方法一般建立在统计力学和bayes理论的基础之上。
如果对条件概率(后验概率) P(q|o)建模,就是Discrminative模型。基本思想是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型。代表性理论为统计学习理论。
这两种方法目前交叉较多。

利用贝叶斯公式发现两个模型的统一性:

clip_image011[8]

由于我们关注的是y的离散值结果中哪个概率大(比如山羊概率和绵羊概率哪个大),而并不是关心具体的概率,因此上式改写为:

其中p(y|x)称为后验概率clip_image005[4]称为先验概率。

clip_image007[4],因此有时称判别模型求的是条件概率,生成模型求的是联合概率。

二、高斯判别分析:gaussian discriminant analysis 

1) 多值正态分布

多变量正态分布描述的是n维随机变量的分布情况,这里的clip_image009变成了向量,clip_image011[10]也变成了矩阵clip_image013。写作clip_image015[4]。假设有n个随机变量X1,X2,…,Xn。clip_image009[1]的第i个分量是E(Xi),而clip_image017[4]

概率密度函数如下:

clip_image018[28]

其中|clip_image020[8]clip_image013[1]的行列式,clip_image013[2]是协方差矩阵,而且是对称半正定的。

clip_image009[2]是二维的时候可以如下图表示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值