差分编码解析以及FPGA实现

本文介绍了差分编码的基本原理,详细解释了差分编码的运行机制,并提供了使用Verilog实现差分编码的具体代码示例。

1、差分编码解析

绝对码bn(输入信号)001011000
相当码dn-1(dn延迟后的相对码)0(保证第一个输出就是绝对码本身)00110111
相对码dn(输出信号)0(输出初始值是绝对码)01101111

    差分编码的原则就是第一个输出的相对码就是绝对码本身,后面用本时刻的相对码与前一个相对码作差(实际就是异或)得到输入信号绝对码,通过上表可以很清楚看出运行机制

  2、差分编码FPGA实现(verilog代码)

     显然,要想实现  差分编码的FPGA实现,需要有输出dn,dn需要初始值(一般为0),需要有dn的延迟值dn-1,而延迟对于verilog来说非常简单,因为阻塞赋值相对于非阻塞赋值本身就要延迟一个一个时钟,因此思路如下:


output dn;
input bn;
assign dn=dn-1^bn;
reg dn-1;
always@(posedge clk or negedge rst)
begin 
 if(!rst) dn-1<=0;
 else dn-1<=dn;
end

 

### 差分编码的概念 差分编码(Differential Encoding)是一种基于相邻数据之间差异的压缩技术,广泛应用于图像和其他信号处理领域。其核心思想在于利用数据序列中的冗余特性,通过对连续样本间的差值进行编码来降低存储需求或传输带宽[^1]。 --- ### 差分编码实现方法 #### 图像压缩中的差分编码 在图像压缩场景下,差分编码通过计算相邻像素之间的差异来进行数据表示。具体过程如下: 1. **输入原始像素值**:假设有一组像素值 \( P_0, P_1, \ldots, P_n \),其中 \( P_i \) 表示第 \( i \) 个像素的灰度值。 2. **计算差值**:对于每一个像素 \( P_i (i > 0) \),计算其与前一个像素 \( P_{i-1} \) 的差值: \[ D_i = P_i - P_{i-1} \] 3. **编码差值**:将这些差值 \( D_i \) 编码成更紧凑的形式以便于存储或传输。 4. **解码恢复**:接收端可以通过累积差值得到原像素值: \[ P_i = P_{i-1} + D_i \] 这种机制显著减少了需要保存的数据量,因为大多数情况下邻近像素的变化较小,因此差值通常集中在某个有限范围内。 --- #### MATLAB 实现示例 以下是使用 MATLAB 进行简单差分编码的一个例子: ```matlab % 输入图像矩阵 originalImage = imread('example.png'); % 加载一张图片作为测试 grayImage = rgb2gray(originalImage); % 转换为灰度图 pixelValues = double(grayImage(:)); % 将图像展平并转换为双精度浮点数 % 计算差分编码 diffEncoded = diff([0; pixelValues]); % 添加初始值 0 并求差分 % 解码还原 reconstructedPixels = cumsum(diffEncoded); % 使用累加函数重建像素值 reconstructedImage = reshape(reconstructedPixels, size(grayImage)); % 显示结果 figure; subplot(1, 2, 1); imshow(uint8(grayImage)); title('Original Image'); subplot(1, 2, 2); imshow(uint8(reconstructedImage)); title('Reconstructed Image'); ``` 上述代码展示了如何对一幅图像应用简单的差分编码以及后续的解码操作。 --- #### 预测型差分编码(DPCM) 除了基本形式外,还存在一种扩展版本称为预测型差分脉冲调制(DPCM),它引入了预测模型进一步优化性能。在这种模式下,不仅考虑当前像素与其直接邻居的关系,还会尝试估计未来可能发生的数值变化趋势,并据此调整实际记录的内容[^3]。 典型流程包括以下几个部分: - 对即将到达的新样点做出初步猜测; - 测定真实测量结果同预期估算间存在的偏差程度; - 把该误差信息经过量化后再予以传递出去;与此同时,在本地重新构建起相应的参照系用于下次预估工作之需。 --- ### 曼彻斯特编码对比 值得注意的是,“差分”这一术语也常出现在其他类型的编码方案之中,比如网络通信里的曼彻斯特编码及其变体——差分曼彻斯特编码。不过它们主要服务于电气层面的信息表达而非专注于媒体文件尺寸缩减方面的问题解决途径[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值