其他链接
C++原版本
另一版本
本文参考大话数据结构,注意书中有部分错误:勘误表
平衡二叉树:是一种二叉排序树,其中每个结点的左子树和右子树的高度差至多等于1。
AVL:是两位俄罗斯数学家名字的简称:G.M.Adelson-Velskii和E.M.Landis
AVL是一种高度平衡的二叉排序树。
要么它是一棵空树,要么它的左子树和右子树都是平衡二叉树,切左子树和右子树的深度之差的绝对值不超过1。
将二叉树上结点的左子树深度减去右子树深度的值称为平衡因子BF(Balance Factor),那么平衡二叉树上所有结点的平衡因子只可能是-1,、0、1。只要有一个结点的平衡因子的绝对值大于1,该二叉树就是不平衡的。
AVLTree源码:只有插入功能(也可以用于创建),查找和二叉排序树代码一样。
删除功能未实现(等等吧)。
public class BitNode
{
public int data;
public int bf; //平衡因子
public BitNode leftChild;
public BitNode rightChild;
}
public class AVLTree
{
const int LH = 1;
const int EH = 0;
const int RH = -1;
public BitNode head = null;
private bool taller = false;
public bool InsertNode(int key)
{
return InsertAVL(ref head, key);
}
/// <summary>
/// 若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个
/// 数据元素为e的新结点并返回1,否则返回0,若因插入而使二叉排序树
/// 失去平衡,则作平衡旋转处理,布尔变量taller反映T的长高与否
/// 注:********这里需要添加ref修饰,不加ref当传参为null时,改变不了传参前的对象********
/// </summary>
/// <param name="T"></param>
/// <param name="e"></param>
/// <param name="taller"></param>
/// <returns></returns>
private bool InsertAVL(ref BitNode T, int e)
{
if (head == null)
{
head = new BitNode();
head.data = e;
head.bf = 0;
head.leftChild = null;
head.rightChild = null;
taller = true;
return true;
}
if (T == null)
{
//插入新结点,树“长高”,置taller为true
T = new BitNode();
T.data = e;
T.leftChild = T.rightChild = null;
T.bf = EH;
taller = true;
}
else
{
if (e == T.data)
{
//树中已存在和e有相同关键字的结点则不再插入
taller = false;
return false;
}
if (e < T.data)
{
//应继续在T的左子树中进行搜索
if (!InsertAVL(ref T.leftChild, e)) //未插入
{
return false;
}
if (taller) //已插入到T的左子树中且左子树“长高”
{
switch (T.bf) //检查T的平衡度
{
case LH: //原本左子树比右子树高,需要作平衡处理
LeftBalance(ref T);
taller = false;
break;
case EH: //原本左右子树等高,现因左子树增高而树增高
T.bf = LH;
taller = true;
break;
case RH: //原本右子树比左子树高,现在左右子树等高
T.bf = EH;
taller = false;
break;
}
}
}
else
{
//应继续在T的右子树中进行搜索
if (!InsertAVL(ref T.rightChild, e)) //未插入
{
return false;
}
if (taller) //已插入到T的右子树且右子树“长高”
{
switch (T.bf) //检查T的平衡度
{
case LH: //原本左子树比右子树高,现在左右子树等高
T.bf = EH;
taller = false;
break;
case EH: //原本左右子树等高,现因右子树增高而树增高
T.bf = RH;
taller = true;
break;
case RH: //原本右子树比左子树高,需要作平衡处理
RightBalance(ref T);
taller = false;
break;
}
}
}
}
return true;
}
/// <summary>
/// 对以T所指结点为根的二叉树作左平衡旋转处理
/// 算法结束时,T指向新的根结点
/// </summary>
/// <param name="T"></param>
private void LeftBalance(ref BitNode T)
{
BitNode left;
BitNode leftNodeRrightChild;
left = T.leftChild;
switch (left.bf)
{
//检查T的左子树的平衡度,并作相应平衡处理
case LH://新结点插入在T的左孩子的左子树上,要作单右旋处理
T.bf = left.bf = EH;
RightRotate(ref T);
break;
case RH://新结点插入在T的左孩子的右子树上,要作双旋处理
leftNodeRrightChild = left.rightChild; //leftNodeRrightChild指向T的左孩子的右子树根
switch (leftNodeRrightChild.bf) //修改T及其左孩子的平衡因子
{
case LH:
T.bf = RH;
left.bf = EH;
break;
case EH:
T.bf = left.bf = EH;
break;
case RH:
T.bf = EH;
left.bf = LH;
break;
}
leftNodeRrightChild.bf = EH;
LeftRotate(ref T.leftChild);
RightRotate(ref T);
break;
}
}
private void RightBalance(ref BitNode T)
{
BitNode right;
BitNode rightNodeLeftChild;
right = T.rightChild;
switch (right.bf)
{
//检查T的右子树的平衡度,并作相应平衡处理
case RH://新结点插入在T的右孩子的右子树上,要作单左旋处理
T.bf = right.bf = EH;
LeftRotate(ref T);
break;
case LH://新结点插入在T的右孩子的左子树上,要作双旋处理
rightNodeLeftChild = right.leftChild; //rightNodeLeftChild指向T的右孩子的左子树根
switch (rightNodeLeftChild.bf) //修改T及其右孩子的平衡因子
{
case LH:
T.bf = EH;
right.bf = RH;
break;
case EH:
T.bf = right.bf = EH;
break;
case RH:
T.bf = LH;
right.bf = EH;
break;
}
rightNodeLeftChild.bf = EH;
RightRotate(ref T.rightChild);
LeftRotate(ref T);
break;
}
}
/// <summary>
/// 右旋:对以node为根的二叉排序树作右旋处理
/// 处理之后node指向新的树根结点,即旋转处理之前的左子树的根结点
/// </summary>
/// <param name="node"></param>
private void RightRotate(ref BitNode node)
{
BitNode temp = node.leftChild;
node.leftChild = temp.rightChild;
temp.rightChild = node;
node = temp;
}
/// <summary>
/// 左旋:对以node为根的二叉排序树作左旋处理
/// 处理之后node指向新的树根结点,即旋转处理之前的右子树的根结点0
/// </summary>
/// <param name="node"></param>
private void LeftRotate(ref BitNode node)
{
BitNode temp = node.rightChild;
node.rightChild = temp.leftChild;
temp.leftChild = node;
node = temp;
}
}