关于考研数学微分方程绝对值问题

摘要

本人在复习考研数学过程中,在做某些微分方程问题时,有些题目的标准答案要加上绝对值,有些又不用加。按理说凡是涉及 l n ln ln 的我全加上就好了,但是加上绝对值又不便下一步计算,为此特地查阅一些资料,将考研数学微分方程中绝对值相关问题整理记录。

本文将首先提出问题模型,接着对其进行分析讨论,最后给出应用结论。

问题的提出

开头提到的微分方程中绝对值问题其实本质上就是不定积分中对 ∫ 1 u   d u = l n ∣ u ∣ + C \int \frac{1}{u} \, du = ln|u| + C u1du=lnu+C 中绝对值的去留问题。在记公式或者课程学习时,我们都知道上式是需要加上绝对值的,但是在有些应用时却又可以不加绝对值,甚至加上绝对值就很难进行下一步计算。下面举几个例子说明。

例1: d y d x = y x \frac{dy}{dx} = \frac{y}{x} dxdy=xy

例2: 2 d y d x = y x 2\frac{dy}{dx} = \frac{y}{x} 2dxdy=xy

例3: e ∫ − 1 x [ ∫ x 2 e ∫ 1 x   d x   d x + C ] e^{\int - \frac{1}{x}} [\int x^2 e^{\int \frac{1}{x} \, dx}\, dx+C] ex1[x2ex1dxdx+C]

分析与讨论

对于例1很好分析,我们按照常规方式来求解。
d y d x = y x \frac{dy}{dx} = \frac{y}{x} dxdy=xy
d y y = d x x \frac{dy}{y} = \frac{dx}{x} ydy=xdx
l n ∣ y ∣ = l n ∣ x ∣ + C 1 ln|y| = ln|x| + C_1 lny=lnx+C1
∣ y ∣ = e C 1 ∣ x ∣ |y| = e^{C_1}|x| y=eC1x
此时由于 y = ± e C 1 ∣ x ∣ y = \pm e^{C_1} |x| y=±eC1x,而如果我们令 ± e C 1 = C 2 \pm e^{C_1} = C_2 ±eC1

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迷亭1213

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值