摘要
本人在复习考研数学过程中,在做某些微分方程问题时,有些题目的标准答案要加上绝对值,有些又不用加。按理说凡是涉及 l n ln ln 的我全加上就好了,但是加上绝对值又不便下一步计算,为此特地查阅一些资料,将考研数学微分方程中绝对值相关问题整理记录。
本文将首先提出问题模型,接着对其进行分析讨论,最后给出应用结论。
问题的提出
开头提到的微分方程中绝对值问题其实本质上就是不定积分中对 ∫ 1 u d u = l n ∣ u ∣ + C \int \frac{1}{u} \, du = ln|u| + C ∫u1du=ln∣u∣+C 中绝对值的去留问题。在记公式或者课程学习时,我们都知道上式是需要加上绝对值的,但是在有些应用时却又可以不加绝对值,甚至加上绝对值就很难进行下一步计算。下面举几个例子说明。
例1: d y d x = y x \frac{dy}{dx} = \frac{y}{x} dxdy=xy
例2: 2 d y d x = y x 2\frac{dy}{dx} = \frac{y}{x} 2dxdy=xy
例3: e ∫ − 1 x [ ∫ x 2 e ∫ 1 x d x d x + C ] e^{\int - \frac{1}{x}} [\int x^2 e^{\int \frac{1}{x} \, dx}\, dx+C] e∫−x1[∫x2e∫x1dxdx+C]
分析与讨论
对于例1很好分析,我们按照常规方式来求解。
d y d x = y x \frac{dy}{dx} = \frac{y}{x} dxdy=xy
d y y = d x x \frac{dy}{y} = \frac{dx}{x} ydy=xdx
l n ∣ y ∣ = l n ∣ x ∣ + C 1 ln|y| = ln|x| + C_1 ln∣y∣=ln∣x∣+C1
∣ y ∣ = e C 1 ∣ x ∣ |y| = e^{C_1}|x| ∣y∣=eC1∣x∣
此时由于 y = ± e C 1 ∣ x ∣ y = \pm e^{C_1} |x| y=±eC1∣x∣,而如果我们令 ± e C 1 = C 2 \pm e^{C_1} = C_2 ±eC1