波动率模型:现货、期货及期货期权

波动率模型:期货波动率VS现货波动率

Fackler, P. L., & Tian, Y. (1999). Volatility models for commodity markets.

1. 主要思想

期货价格的波动率和期权的隐含波动率依赖于基本面因素,尤其是现货的价格。(期权的隐含波动率暂时不关心)
V T ( t ) = e − k ( T − t ) σ ( t ) V_T(t) = e^{-k(T-t)} \sigma(t) VT(t)=ek(Tt)σ(t)
其中, V T ( t ) V_T(t) VT(t)是期货价格的波动率, σ ( t ) \sigma(t) σ(t)是现货价格的波动率, k k k是即期对数现货价格向长期平均水平收敛的速度,T是期货剩余到期时间。 e − k ( T − t ) e^{-k(T-t)} ek(Tt)项(damping term)会使得波动率随着T的增加而降低。
V T 1 > V T 2 , f o r T 1 < T 2 V_{T_1} >V_{T_2} , \quad for \quad T_1 < T_2 VT1>VT2,forT1<T2

e − k ( T − t ) e^{-k(T-t)} ek(Tt)项很好的诠释了"萨缪尔森假设"(Samuelson 1965)或者"到期效应",Samuelson提出期货合约随着到期日的邻近其价格波动的幅度将逐渐增大。

2. 模型推导

为了验证这个思想,作者使用了一个随机微分方程(Hull-White模型)来表示对数现货价格的变化过程,如下所示:
d p = k ( α ( t ) − p ) d t + σ ( t ) d z , p = l n P (1) dp = k(\alpha(t)-p)dt + \sigma(t) dz, p =ln P \tag{1} dp=k(α(t)p)dt+σ(t)dzp=lnP(1)
可以证明:
α ( t ) = μ ( t ) + μ ′ ( t ) / k , σ 2 ( t ) = 2 k v ( t ) + v ′ ( k ) \alpha(t) = \mu(t) +\mu'(t)/k, \quad \sigma^2(t) = 2kv(t) +v'(k) α(t)=μ(t)+μ(t)/k,σ2(t)=2kv(t)+v(k)
其中 p p p是现货价格的对数形式, d p dp dp相当于就是现货价格的收益率。 α \alpha α σ \sigma σ是时间的函数(seasonal functions of time)。这个过程呈现了收益率均值的均值回归特性和波动率的周期性变动。 k k k是即期对数现货价格向长期平均水平收敛的速度, α ( t ) \alpha(t) α(t)是长期平均即期对数现货价格。(与Schwartz不同的是,这里的长期平均水平是周期性/季节性变动的,波动率依然是如此。) μ \mu μ v v v是周期性函数,能从 α \alpha α σ 2 \sigma^2 σ2推导出。

由(1)式可知,对数差分 d p dp dp是服从正太分布的, p ( t + h ) p(t+h) p(t+h)条件均值和方差如下所示:
E t [ p ( t + h ) ] = μ ( t + h ) + e − k h ( p ( t ) − μ ( t ) ) , V a r t [ p ( t + h ) ] = v ( t + h ) − e − 2 k h v ( t ) (2) E_t[p(t+h)] = \mu(t+h) +e^{-kh}(p(t)-\mu(t)), \\ Var_t[p(t+h)] = v(t+h) -e^{-2kh}v(t) \tag{2} Et[p(t+h)]=μ(t+h)+ekh(p(t)μ(t)),Vart[p(t+h)]=v(t+h)e2khv(t)(2)

参考文献:Schwartz, E. S. (1997). The stochastic behavior of commodity prices: Implications for valuation and hedging. The Journal of finance, 52(3), 923-973.
(1)式的原型来自于Schwartz, E. S. (1997)的论文,Schwartz建立了一个单因素的描述了均值回复的模型(Hull-White),假定现货价格服从以下的随机过程:
d S = k ( μ − l n S ) S d t + σ S d z dS = k(\mu - ln S)Sdt +\sigma S dz dS=k(μlnS)Sdt+σSdz
X = l n S X=ln S X=lnS,并运动伊藤引理,可以得到:
d X = k ( α − X ) d t + σ d z α = μ − σ 2 2 k dX = k(\alpha-X)dt +\sigma dz \\ \alpha = \mu - \frac{\sigma^2}{2k} dX=k(αX)dt+σdzα=μ2kσ2
其中k代表了均值回归调整速度,k>0,代表了均值回复到长期对数价格均值的速度。 α \alpha α刻画了该过程的波动率。
现货价格的对数的条件均值和方差如下所示:
E 0 [ X ( T ) ] = e − k T X ( 0 ) + ( 1 − e − k T ) α V a r 0 [ X ( T ) ] = σ 2 2 k ( 1 − 2 e − 2 k T ) E_0[X(T)] = e^{-kT} X(0) +(1 -e^{-kT}) \alpha \\ Var_0[X(T)] = \frac{\sigma^2}{2k} (1- 2e^{-2kT}) E0[X(T)]=ekTX(0)+(1ekT)αVar0[X(T)]=2kσ2(12e2kT)

由现货价格的对数正态分布的性质可以得到:
E t [ P ( T ) ] = e x p ( E t ( p ( T ) ) + 1 2 V a r t ( p ( T ) ) ) (3) E_t[P(T)] = exp(E_t(p(T)) + \frac{1}{2} Var_t(p(T))) \tag{3} Et[P(T)]=exp(Et(p(T))+21Vart(p(T)))(3)
到期时刻为T的期货的价格为现货价格在T时刻的期望的价格,结合(2)式和(3)式,可以得到:
F ( P , t ; T ) = e x p ( μ ( T ) + e − k ( T − t ) ( l n ( P ) − μ ( t ) ) + 1 2 ( v ( T ) − e − 2 k ( T − t ) v ( t ) ) ) (4) F(P,t;T) = exp(\mu(T) + e^{-k(T-t)}(ln(P)-\mu(t)) + \frac{1}{2}(v(T)-e^{-2k(T-t)}v(t) )) \tag{4} F(P,t;T)=exp(μ(T)+ek(Tt)(ln(P)μ(t))+21(v(T)e2k(Tt)v(t)))(4)
由(4)式可以得到F关于P的偏导数 F p F_p Fp
F p = ∂ F ∂ P = F P e − k ( T − t ) (5) F_p = \frac{\partial F}{\partial P} = \frac{F}{P} e^{-k(T-t)} \tag{5} Fp=PF=PFek(Tt)(5)

简化起见,假定剩余到期时间为T的期货价格是现货价格的函数(单因素的模型),如果现货价格过程是满足风险中性的,或者说没有风险溢价,那么期货价格是无漂移项的价格过程,如下所示:
d F = F V T ( t ) d z (6) dF = FV_T(t) dz \tag{6} dF=FVT(t)dz(6)
根据伊藤引理,我们可以得到:
d F = σ ( t ) P F p d z (7) dF = \sigma(t) P F_p dz \tag{7} dF=σ(t)PFpdz(7)
其中F是期货的价格,P是现货的价格, V T ( t ) V_T(t) VT(t)是期货价格的波动率, F p F_p Fp是F对于P的偏导数。
V T ( t ) = e − k ( T − t ) σ ( t ) (8) V_T(t) = e^{-k(T-t)} \sigma(t) \tag{8} VT(t)=ek(Tt)σ(t)(8)

详细推导:
假设X服从几何布朗运动, d X ( t ) = a ( X ( t ) , t ) d t + b ( X ( t ) , t ) d z dX(t) = a(X(t),t)dt +b(X(t),t)dz dX(t)=a(X(t),t)dt+b(X(t),t)dz,f是X的函数,令f((X(t),t))为X(t)的二阶连续可导函数(并对t一阶可导),由伊藤引理可得:
d f = ∂ f ∂ t d t + ∂ f ∂ X d X + 1 2 ∂ 2 f ∂ X 2 ( d X ) 2 df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial X}dX +\frac{1}{2}\frac{\partial^2 f}{\partial X^2}(dX)^2 df=tfdt+XfdX+21X22f(dX)2
d X ( t ) = a ( X ( t ) , t ) d t + b ( X ( t ) , t ) d z dX(t) = a(X(t),t)dt +b(X(t),t)dz dX(t)=a(X(t),t)dt+b(X(t),t)dz代入上式中,并且省去比dt更高的项 ( d t ) 2 (dt)^2 (dt)2,就可以得到伊藤引理的一般形式:
d f = ( ∂ f ∂ t + ∂ f ∂ X a + 1 2 ∂ 2 f ∂ X 2 b 2 ) d t + ∂ f ∂ X b d z df = (\frac{\partial f}{\partial t} + \frac{\partial f}{\partial X}a +\frac{1}{2}\frac{\partial^2 f}{\partial X^2}b^2)dt+\frac{\partial f}{\partial X}bdz df=(tf+Xfa+21X22fb2)dt+Xfbdz
可以看出f也是服从几何布朗运动的。
再回来本文,现货价格是服从几何布朗运动的,期货价格是现货价格的函数,那么可以得到上述的伊藤引理的一般公式,但由风险中性的条件可以推出期货价格过程是无漂移项的,也就是没有dt这一项,那么 d f = ∂ f ∂ X b d z , b = σ ( t ) S df=\frac{\partial f}{\partial X}bdz, b=\sigma(t) S df=Xfbdz,b=σ(t)S

3. 参数估计

式子(1)可以写成如下的形式:
p t = c t + Q t p t − 1 + η t , t = 1 , . . . . , N T p_t = c_t + Q_t p_{t-1} +\eta_t, \quad t=1,....,NT pt=ct+Qtpt1+ηt,t=1,....,NT
其中:
c t = k α ( t ) Δ t , Q t = 1 − k Δ t c_t = k \alpha(t) \Delta t, \quad Q_t = 1- k \Delta t ct=kα(t)Δt,Qt=1kΔt
η t \eta_t ηt,是无自相关的序列,并且服从正态分布,其期望和方差如下所示:
E ( η t ) = 0 , V a r ( η t ) = σ 2 Δ t E(\eta_t)=0, \quad Var(\eta_t) = \sigma^2 \Delta t E(ηt)=0,Var(ηt)=σ2Δt
通过最小二乘方式来估计出参数 Q t Q_t Qt就可以得到k的值。

4. 模拟实验

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值