读书(待续)-刚体力学基础

刚体力学

刚体(rigid body): 在受力、运动情况下其形状和大小都不发生变化的物体。

质元(mass element): 质量微元。与质点的区别:质元是所分析物体的质量微元,质量趋近于0;质点是质量集中于一点的物体,质量大于0。

自由度(degree of freedom): 确定一个物体位置所需要的独立坐标数目,也就是为了确定物体的位置所必须给定的独立的广义坐标的数目。

平动(translation): 刚体在运动过程中,任意两质元的连线在后一时刻的取向总与前一时刻的取向平行。

转动(rotation): 刚体上所有质元都绕同一条直线做圆周运动,该直线称为刚体的转轴。转动进一步可以分为定点转动(fixed-point rotation)和定轴转动(fixed-axis rotation)。

公式编辑的一些小trick:

1)变量用斜体:矩阵用大写斜体字母(不加粗);矢量用小写加粗斜体字母;标量用小写斜体字母(不加粗)。
2)专有函数名称用正体,如sin、ln、exp等;一般函数用斜体,如f(x)、U(x)等:函数映射为标量就不加粗,映射为矢量就加粗,映射为矩阵就大写(不一定)。
3) 求导符号d用正体,求极限符号lim用正体,上下界符号sup/sub用正体,数字用正体、上下标是变量就用斜体,上下标是运算符号(如转置^T)一般用正体,上下标有所指代时(如动能k、势能p等)一般用正体,i用作虚数符号时用正体,i用作序号表示时用斜体。
4)基底(i, j, k)用斜体加粗。

图1:刚体定轴转动示意图
图2:右手螺旋关系

质元 P P P的位置矢量为: R P = O O ′ → + r P \boldsymbol{R}_P = \overrightarrow{OO'} + \boldsymbol{r}_P RP=OO +rP。对时间求导,注意到 O O ′ → \overrightarrow{OO'} OO 与时间无关,得质元 P P P相对参考系的速度:
v P = d R P d t = d R P d t (1) \boldsymbol{v}_P = \frac{\text{d} \boldsymbol{R}_P}{\text{d} t} = \frac{\text{d} \boldsymbol{R}_P}{\text{d} t} \tag{1} vP=dtdRP=dtdRP(1)

φ \varphi φ(即图中的 θ \theta θ)表示刚体转过的角度,在定轴转动的情况下,质元 P P P转动半径 ∣ r P ∣ |\boldsymbol{r}_P| rP不变, d r P \rm{d} \boldsymbol{r}_P drP方向(即质元 P P P速度方向)沿圆周轨道的切向,大小为 r P d φ r_P \rm{d} \varphi rPdφ d φ \rm{d} \varphi dφ是刚体在 d t \rm{d} t dt时间内的角位移。因此质元 P P P的速度大小为:
v P = r P d φ d t (2) v_P = r_P \frac{\text{d} \varphi}{\text{d} t} \tag{2} vP=rPdtdφ(2)

与定义质点运动速度相似,定义角位移 φ = φ ( t ) \varphi = \varphi(t) φ=φ(t)对时间的变化率为角速度(angular velocity)
ω = lim ⁡ Δ r → 0 Δ φ Δ t = d φ d t (3) \omega = \lim_{\Delta r \rightarrow 0} \frac{\Delta \varphi}{\Delta t} = \frac{\text{d} \varphi}{\text{d} t} \tag{3} ω=Δr0limΔtΔφ=dtdφ(3)

规定角速度方向沿转轴,其指向与刚体转动方向呈右手螺旋关系。因此质元 P P P速度矢量为:
v P = ω × r P = ω × R P (4) \boldsymbol{v}_P = \boldsymbol{\omega} \times \boldsymbol{r}_P = \boldsymbol{\omega} \times \boldsymbol{R}_P \tag{4} vP=ω×rP=ω×RP(4)

为了描述刚体角速度随时间的变化,再引入角加速度(angular acceleration),即角速度对时间的变化率:
α = lim ⁡ Δ t → 0 Δ ω Δ t = d ω d t (5) \boldsymbol{\alpha} = \lim_{\Delta t \rightarrow 0} \frac{\Delta \boldsymbol{\omega}}{\Delta t} = \frac{\text{d} \boldsymbol{\omega}}{\text{d} t} \tag{5} α=Δt0limΔtΔω=dtdω(5)

在定轴转动情况下,角速度和角加速度只有正反两个方向,在规定转轴正向后,角速度和角加速度的大小和方向可以用代数值来表示:
α = d ω d t = d 2 φ d t 2 (6) \alpha = \frac{\text{d} \omega}{\text{d} t} = \frac{\text{d}^2 \varphi}{\text{d} t^2} \tag{6} α=dtdω=dt2d2φ(6)

因此,质元 P P P的加速度为:
a P = d v P d t = d d t ( ω × r P ) = d ω d t × r P + ω × ( ω × d r P d t ) = α × r P + ω × ( ω × r P ) (7) \begin{aligned} \boldsymbol{a}_P &= \frac{\text{d} \boldsymbol{v}_P}{\text{d} t} = \frac{\text{d}}{\text{d} t} (\boldsymbol{\omega} \times \boldsymbol{r}_P) = \frac{\text{d} \boldsymbol{\omega}}{\text{d} t} \times \boldsymbol{r}_P + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \frac{\text{d} \boldsymbol{r}_P}{\text{d} t}) \\ &= \boldsymbol{\alpha} \times \boldsymbol{r}_P + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{r}_P) \end{aligned} \tag{7} aP=dtdvP=dtd(ω×rP)=dtdω×rP+ω×(ω×dtdrP)=α×rP+ω×(ω×rP)(7)

ω × ( ω × r P ) \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{r}_P) ω×(ω×rP)进行分解(三矢量矢积公式):
ω × ( ω × r P ) = ( ω ⋅ r P ) ω − ω 2 r P (8) \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{r}_P) = (\boldsymbol{\omega} \cdot \boldsymbol{r}_P) \boldsymbol{\omega} - \omega^2 \boldsymbol{r}_P \tag{8} ω×(ω×rP)=(ωrP)ωω2rP(8)

( 8 ) (8) (8)式代入 ( 7 ) (7) (7)式,可以表示为切向分量(tangential component)和法向分量(normal component)形式:
{ a P t = d ω d t r P = r P α a P n = − r P ω 2 = − v P 2 r P (9) \left \{ \begin{aligned} a_{Pt} &= \frac{\text{d} \omega}{\text{d} t} r_P = r_P \alpha \\ a_{Pn} &= - r_P \omega^2 = - \frac{v_P^2}{r_P} \end{aligned} \right. \tag{9} aPtaPn=dtdωrP=rPα=rPω2=rPvP2(9)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值