一道数学题的两种解答方法

【统计推断类题目】

设总体 X X X 服从 [ 0 , θ ] [0, \theta] [0,θ] 上的均匀分布,其中 θ ∈ ( 0 , + ∞ ) \theta \in (0, +\infty) θ(0,+) 为未知参数,
X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 是来自总体 X X X 的简单随机样本,记 X ( n ) = max ⁡ { X 1 , X 2 , ⋯   , X n } , T c = c X ( n ) X(n) = \max \{ X_1, X_2, \cdots, X_n \}, \quad T_c = cX(n) X(n)=max{X1,X2,,Xn},Tc=cX(n)

(1) 求 c c c,使得 T c T_c Tc θ \theta θ 的无偏估计;

(2) 记 h ( c ) = E ( T c − θ ) 2 h(c) = E(T_c - \theta)^2 h(c)=E(Tcθ)2,求 c c c 使得 h ( c ) h(c) h(c) 最小。

—————— 解答 —————
【解法一】

首先,由于 X i ∼ U ⁡ ( 0 , θ ) X_i \sim \operatorname{U}(0, \theta) XiU(0,θ),记 Y = X ( n ) Y=X(n) Y=X(n) 为样本最大值,其累积分布函数为
F Y ( y ) = ( y θ ) n , 0 ≤ y ≤ θ , F_Y(y) = \left(\frac{y}{\theta}\right)^n, \quad 0\le y\le\theta, FY(y)=(θy)n,0yθ,
故其概率密度函数为
f Y ( y ) = d d y F Y ( y ) = n θ n y n − 1 , 0 ≤ y ≤ θ . f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{n}{\theta^n}y^{n-1}, \quad 0\le y\le\theta. fY(y)=dydFY(y)=θnnyn1,0yθ.

【(1) 求无偏估计】

计算 Y Y Y 的均值:
E ( Y ) = ∫ 0 θ y n θ n y n − 1   d y = n θ n ∫ 0 θ y n   d y = n θ n ⋅ θ n + 1 n + 1 = n n + 1 θ . E(Y) = \int_0^\theta y \frac{n}{\theta^n}y^{n-1}\,dy = \frac{n}{\theta^n}\int_0^\theta y^n\,dy = \frac{n}{\theta^n} \cdot \frac{\theta^{n+1}}{n+1} = \frac{n}{n+1}\theta. E(Y)=0θyθnnyn1dy=θnn0θyndy=θnnn+1θn+1=n+1nθ.
由于估计量 T c = c Y T_c = cY Tc=cY 要无偏,即需满足
E ( T c ) = c E ( Y ) = c n n + 1 θ = θ , E(T_c)= cE(Y)= c\frac{n}{n+1}\theta = \theta, E(Tc)=cE(Y)=cn+1nθ=θ,
从而解得
c = n + 1 n . c = \frac{n+1}{n}. c=nn+1.

【(2) 求最小均方误差】

计算均方误差:
h ( c ) = E [ ( c Y − θ ) 2 ] = c 2 E ( Y 2 ) − 2 c θ E ( Y ) + θ 2 . h(c) = E[(cY-\theta)^2] = c^2E(Y^2) - 2c\theta E(Y) + \theta^2. h(c)=E[(cYθ)2]=c2E(Y2)2cθE(Y)+θ2.
同样地,可计算
E ( Y 2 ) = ∫ 0 θ y 2 n θ n y n − 1   d y = n θ n ∫ 0 θ y n + 1   d y = n θ n ⋅ θ n + 2 n + 2 = n n + 2 θ 2 . E(Y^2) = \int_0^\theta y^2\frac{n}{\theta^n}y^{n-1}\,dy = \frac{n}{\theta^n}\int_0^\theta y^{n+1}\,dy = \frac{n}{\theta^n} \cdot \frac{\theta^{n+2}}{n+2} = \frac{n}{n+2}\theta^2. E(Y2)=0θy2θnnyn1dy=θnn0θyn+1dy=θnnn+2θn+2=n+2nθ2.
代入上式得
h ( c ) = c 2 n n + 2 θ 2 − 2 c n n + 1 θ 2 + θ 2 = θ 2 ( c 2 n n + 2 − 2 c n n + 1 + 1 ) . h(c) = c^2\frac{n}{n+2}\theta^2 - 2c\frac{n}{n+1}\theta^2 + \theta^2 = \theta^2\left(c^2\frac{n}{n+2} - 2c\frac{n}{n+1} + 1\right). h(c)=c2n+2nθ22cn+1nθ2+θ2=θ2(c2n+2n2cn+1n+1).
令关于 c c c 的表达式取极值,对 c c c 求导并置零:
d d c ( c 2 n n + 2 − 2 c n n + 1 + 1 ) = 2 c n n + 2 − 2 n n + 1 = 0. \frac{d}{dc} \left(c^2\frac{n}{n+2} - 2c\frac{n}{n+1} + 1\right) = 2c\frac{n}{n+2} - 2\frac{n}{n+1} = 0. dcd(c2n+2n2cn+1n+1)=2cn+2n2n+1n=0.
解得
c = n + 2 n + 1 . c = \frac{n+2}{n+1}. c=n+1n+2.

—————— 结论 —————

(1) 当 c = n + 1 n c=\frac{n+1}{n} c=nn+1 时, T c T_c Tc θ \theta θ 的无偏估计;

(2) 当 c = n + 2 n + 1 c=\frac{n+2}{n+1} c=n+1n+2 时,均方误差 h ( c ) h(c) h(c) 取得最小值。

【解法二】

注意到样本极大值 Y 的概率密度函数为
f Y ( y ) = n θ n y n − 1 , 0 ≤ y ≤ θ , f_Y(y)= \frac{n}{\theta^n}y^{n-1},\quad 0\le y\le \theta, fY(y)=θnnyn1,0yθ,
实际上可将 Y 表示成
Y = θ Z , Y=\theta Z, Y=θZ,
其中 Z ∼ B e t a ( n , 1 ) Z\sim \mathrm{Beta}(n,1) ZBeta(n,1),因此有
E ( Z ) = n n + 1 , E ( Z 2 ) = n n + 2 . E(Z)=\frac{n}{n+1},\quad E(Z^2)=\frac{n}{n+2}. E(Z)=n+1n,E(Z2)=n+2n.

【(1) 求无偏估计】

记估计量为 T c = c Y = c θ Z T_c=cY=c\theta Z Tc=cY=cθZ,则其期望为
E ( T c ) = c θ E ( Z ) = c θ n n + 1 . E(T_c)=c\theta E(Z)=c\theta\frac{n}{n+1}. E(Tc)=cθE(Z)=cθn+1n.
E ( T c ) = θ E(T_c)=\theta E(Tc)=θ,则必有
c n n + 1 = 1 , ⟹ c = n + 1 n . c\frac{n}{n+1}=1,\quad\Longrightarrow\quad c=\frac{n+1}{n}. cn+1n=1,c=nn+1.

【(2) 求最小均方误差】

目标是最小化均方误差
h ( c ) = E [ ( c Y − θ ) 2 ] = θ 2 E [ ( c Z − 1 ) 2 ] . h(c)=E[(cY-\theta)^2]=\theta^2E[(cZ-1)^2]. h(c)=E[(cYθ)2]=θ2E[(cZ1)2].
将平方展开得
h ( c ) = θ 2 ( c 2 E ( Z 2 ) − 2 c E ( Z ) + 1 ) = θ 2 ( c 2 n n + 2 − 2 c n n + 1 + 1 ) . h(c)=\theta^2\left(c^2E(Z^2)-2cE(Z)+1\right) =\theta^2\left(c^2\frac{n}{n+2}-2c\frac{n}{n+1}+1\right). h(c)=θ2(c2E(Z2)2cE(Z)+1)=θ2(c2n+2n2cn+1n+1).

下面采用配方法对括号内的表达式进行处理:

Q ( c ) = c 2 n n + 2 − 2 c n n + 1 + 1. Q(c)=c^2\frac{n}{n+2}-2c\frac{n}{n+1}+1. Q(c)=c2n+2n2cn+1n+1.
首先,将 Q ( c ) Q(c) Q(c) 中的二次项因子提取出来:
Q ( c ) = n n + 2 [ c 2 − 2 c ( n + 2 n + 1 ) ] + 1. Q(c)=\frac{n}{n+2}\left[c^2-2c\left(\frac{n+2}{n+1}\right)\right]+1. Q(c)=n+2n[c22c(n+1n+2)]+1.
为了配成完全平方式,我们在括号中加减 ( n + 2 n + 1 ) 2 \left(\frac{n+2}{n+1}\right)^2 (n+1n+2)2
c 2 − 2 c ( n + 2 n + 1 ) = ( c − n + 2 n + 1 ) 2 − ( n + 2 n + 1 ) 2 . c^2-2c\left(\frac{n+2}{n+1}\right) =\left(c-\frac{n+2}{n+1}\right)^2-\left(\frac{n+2}{n+1}\right)^2. c22c(n+1n+2)=(cn+1n+2)2(n+1n+2)2.
因此,
Q ( c ) = n n + 2 [ ( c − n + 2 n + 1 ) 2 − ( n + 2 n + 1 ) 2 ] + 1 , Q(c)=\frac{n}{n+2}\left[\left(c-\frac{n+2}{n+1}\right)^2-\left(\frac{n+2}{n+1}\right)^2\right]+1, Q(c)=n+2n[(cn+1n+2)2(n+1n+2)2]+1,

Q ( c ) = n n + 2 ( c − n + 2 n + 1 ) 2 + [ 1 − n n + 2 ( n + 2 n + 1 ) 2 ] . Q(c)=\frac{n}{n+2}\left(c-\frac{n+2}{n+1}\right)^2 +\left[1-\frac{n}{n+2}\left(\frac{n+2}{n+1}\right)^2\right]. Q(c)=n+2n(cn+1n+2)2+[1n+2n(n+1n+2)2].

由于第一项为非负项,故当且仅当
c = n + 2 n + 1 , c=\frac{n+2}{n+1}, c=n+1n+2,
时, Q ( c ) Q(c) Q(c) 取得最小值,从而均方误差 h ( c ) h(c) h(c) 也取得最小值。

—————— 结论 —————

(1) 当 c = n + 1 n c=\frac{n+1}{n} c=nn+1 时, T c = c Y T_c=cY Tc=cY θ \theta θ 的无偏估计;

(2) 当 c = n + 2 n + 1 c=\frac{n+2}{n+1} c=n+1n+2 时, T c = c Y T_c=cY Tc=cY 使均方误差达到最小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

一块去征服星辰大海吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值