第二讲:二体问题基础
引言
轨道力学的核心在于解决天体运动问题,而最基本的天体运动模型就是二体问题。从开普勒定律到现代航天器轨道设计,二体问题始终是轨道力学理论体系的基石。正如著名的轨道力学大师沃兹基·硕德(Vozky Shord)在其经典著作《航天动力学数学方法导论》中所言:“二体问题的解决方案蕴含着通向星辰大海的钥匙。”
在本讲中,我们将从二体问题的数学描述入手,探讨各类轨道的特性,并建立描述轨道的根数体系。通过对这些基础知识的掌握,我们将能够理解航天器在太空中的运动规律,为后续更复杂的轨道设计和分析奠定坚实基础。
二体问题的美妙之处在于,它既有严格的数学解析解,又能在实际中提供足够精确的近似结果。尽管真实的航天器轨道受到多种摄动力的影响,但二体问题的解决方案仍是我们理解和预测轨道运动的起点。让我们怀着对宇宙运动规律的好奇与敬畏,开始这段探索二体问题奥秘的旅程。
1. 二体问题的数学描述
1.1 问题定义与基本假设
二体问题是指在只考虑两个天体之间相互引力作用的条件下,研究它们的运动规律。在研究二体问题时,我们通常做以下基本假设:
- 两个天体可视为质点,即忽略天体的形状和大小。
- 两个天体之间只存在万有引力作用,忽略其他外力。
- 两个天体的质量保持不变。
- 参考系是惯性系。
这些假设虽然简化了实际问题,但在大多数情况下(尤其是行星围绕恒星运行或卫星围绕行星运行)都能提供足够精确的结果。事实上,在许多实际应用中,当一个天体的质量远大于另一个天体时(如地球与卫星的关系),我们可以进一步简化为限制性二体问题。
1.2 相对运动方程
考虑两个质量分别为 m 1 m_1 m1和 m 2 m_2 m2的天体,它们在空间中的位置矢量分别为 r ⃗ 1 \vec{r}_1 r1和 r ⃗ 2 \vec{r}_2 r2。按照牛顿第二定律和万有引力定律,这两个天体的运动方程可以写为:
m 1 d 2 r ⃗ 1 d t 2 = G m 1 m 2 ∣ r ⃗ 2 − r ⃗ 1 ∣ 3 ( r ⃗ 2 − r ⃗ 1 ) m_1\frac{d^2\vec{r}_1}{dt^2} = \frac{Gm_1m_2}{|\vec{r}_2-\vec{r}_1|^3}(\vec{r}_2-\vec{r}_1) m1dt2d2r1=∣r2−r1∣3Gm1m2(r2−r1)
m 2 d 2 r ⃗ 2 d t 2 = G m 1 m 2 ∣ r ⃗ 1 − r ⃗ 2 ∣ 3 ( r ⃗ 1 − r ⃗ 2 ) m_2\frac{d^2\vec{r}_2}{dt^2} = \frac{Gm_1m_2}{|\vec{r}_1-\vec{r}_2|^3}(\vec{r}_1-\vec{r}_2) m2dt2d2r2=∣r1−r2∣3Gm1m2(r1−r2)
其中, G G G是万有引力常数, ∣ r ⃗ 2 − r ⃗ 1 ∣ |\vec{r}_2-\vec{r}_1| ∣r2−r1∣是两天体间的距离。
为了简化问题,我们引入相对位置矢量 r ⃗ = r ⃗ 2 − r ⃗ 1 \vec{r} = \vec{r}_2 - \vec{r}_1 r=r2−r1,表示天体2相对于天体1的位置。同时,我们定义系统的质心位置 R ⃗ \vec{R} R为:
R ⃗ = m 1 r ⃗ 1 + m 2 r ⃗ 2 m 1 + m 2 \vec{R} = \frac{m_1\vec{r}_1 + m_2\vec{r}_2}{m_1 + m_2} R=m1+m2m1r1+m2r2
通过一系列数学推导,我们可以将原来的两个矢量方程转化为两个独立的方程:
- 质心运动方程:
d 2 R ⃗ d t 2 = 0 \frac{d^2\vec{R}}{dt^2} = 0 dt2d2R=0
这表明系统的质心做匀速直线运动,这符合我们的直觉,因为在没有外力的情况下,系统的质心应该遵循牛顿第一定律。
- 相对运动方程:
d 2 r ⃗ d t 2 = − μ ∣ r ⃗ ∣ 3 r ⃗ \frac{d^2\vec{r}}{dt^2} = -\frac{\mu}{|\vec{r}|^3}\vec{r} dt2d2r=−∣r∣3μr
这里 μ = G ( m 1 + m 2 ) \mu = G(m_1 + m_2) μ=G(m1+m2)是系统的引力参数。这个方程描述了天体2相对于天体1的运动,它是我们研究轨道特性的基础。
相对运动方程是一个二阶非线性微分方程,乍看之下似乎很复杂,但实际上它有一个优雅的解析解。这正是轨道力学之美的体现 — 复杂的物理现象可以用简洁的数学形式表达。
1.3 角动量守恒
在二体问题中,一个重要的物理量是角动量。对于质量为 m m m的天体绕质量为 M M M的中心天体运动,其单位质量角动量 h ⃗ \vec{h} h定义为:
h ⃗ = r ⃗ × v ⃗ \vec{h} = \vec{r} \times \vec{v} h=r×v
其中 r ⃗ \vec{r} r是位置矢量, v ⃗ \vec{v} v是速度矢量, × \times ×表示矢量叉乘。
通过对相对运动方程进行分析,我们可以证明:
d h ⃗ d t = r ⃗ × d v ⃗ d t = r ⃗ × ( − μ r 3 r ⃗ ) = 0 ⃗ \frac{d\vec{h}}{dt} = \vec{r} \times \frac{d\vec{v}}{dt} = \vec{r} \times \left(-\frac{\mu}{r^3}\vec{r}\right) = \vec{0} dtdh=r×dtdv=r×(−r3μr)=0
这个结果表明单位质量角动量 h ⃗ \vec{h} h是一个常矢量,即角动量守恒。这是二体问题中的第一个重要守恒量。
角动量守恒有一个直观的几何意义:天体的运动轨迹必定在一个平面内。因为 r ⃗ \vec{r} r和 v ⃗ \vec{v} v的叉乘 h ⃗ \vec{h} h是一个常矢量,所以 r ⃗ \vec{r} r必定垂直于 h ⃗ \vec{h} h,这意味着天体的运动被限制在以中心天体为原点、以 h ⃗ \vec{h} h为法向量的平面内。
这一结论极大地简化了问题的复杂度,使我们可以将三维空间中的运动简化为平面内的运动。这也是为什么我们在描述轨道时,可以使用一组平面内的参数(如半长轴、偏心率等)和一组定义轨道平面方向的参数(如轨道倾角、升交点赤经等)。
1.4 能量守恒
除了角动量守恒外,二体问题中还有另一个重要的守恒量:能量。我们可以定义单位质量的机械能 E E E为动能和势能之和:
E = 1 2 v 2 − μ r E = \frac{1}{2}v^2 - \frac{\mu}{r} E=21v2−rμ
其中 v v v是速度大小, r r r是距离。
通过对相对运动方程进行分析,我们可以证明:
d E d t = d d t ( 1 2 v 2 − μ r ) = v ⃗ ⋅ d v ⃗ d t + μ r 2 d r d t = 0 \frac{dE}{dt} = \frac{d}{dt}\left(\frac{1}{2}v^2 - \frac{\mu}{r}\right) = \vec{v} \cdot \frac{d\vec{v}}{dt} + \frac{\mu}{r^2}\frac{dr}{dt} = 0 dtdE=dtd(21v2−rμ)=v⋅dtdv+r2μdtdr=0
这表明机械能 E E E是守恒的。能量守恒是二体问题中的第二个重要守恒量。
能量守恒定律使我们能够建立轨道形状与能量之间的关系。具体来说,轨道的机械能与轨道的半长轴 a a a有直接关系:
E = − μ 2 a E = -\frac{\mu}{2a} E=−2aμ
这个关系式告诉我们,对于椭圆轨道(包括圆轨道),机械能为负值;对于抛物线轨道,机械能恰好为零;而对于双曲线轨道,机械能为正值。这一能量分类方法为我们理解不同类型轨道的物理特性提供了清晰的框架。
1.5 轨道积分与轨道方程
结合角动量守恒和能量守恒,我们可以导出二体问题的轨道方程。首先,将相对运动方程与角动量的定义结合,我们可以得到:
d v ⃗ d t = − μ r 3 r ⃗ \frac{d\vec{v}}{dt} = -\frac{\mu}{r^3}\vec{r} dtdv=−r3μr
对这个方程两边同时叉乘 h ⃗ \vec{h} h,经过一系列矢量恒等变换,最终可以得到:
d d t ( v ⃗ × h ⃗ ) = − μ d r ⃗ d t \frac{d}{dt}(\vec{v} \times \vec{h}) = -\mu\frac{d\vec{r}}{dt} dtd(v×h)=−μdtdr
积分后可得:
v ⃗ × h ⃗ = − μ r ⃗ + C ⃗ \vec{v} \times \vec{h} = -\mu\vec{r} + \vec{C} v×h=−μr+C
其中 C ⃗ \vec{C} C是一个积分常矢量,被称为拉普拉斯矢量或偏心率矢量。
将上式点乘 r ⃗ \vec{r} r,利用矢量三重积的性质,可以得到:
r ⃗ ⋅ ( v ⃗ × h ⃗ ) = − μ r + r ⃗ ⋅ C ⃗ \vec{r} \cdot (\vec{v} \times \vec{h}) = -\mu r + \vec{r} \cdot \vec{C} r⋅(v×h)=−μr+r⋅C
注意到 r ⃗ ⋅ ( v ⃗ × h ⃗ ) = h ⃗ ⋅ ( r ⃗ × v ⃗ ) = − h ⃗ ⋅ h ⃗ = − h 2 \vec{r} \cdot (\vec{v} \times \vec{h}) = \vec{h} \cdot (\vec{r} \times \vec{v}) = -\vec{h} \cdot \vec{h} = -h^2 r⋅(v×h)=h⋅(r×v)=−h⋅h=−h2,所以:
− h 2 = − μ r + r C cos θ -h^2 = -\mu r + rC\cos\theta −h2=−μr+rCcosθ
整理得:
r = h 2 / μ 1 + ( C / μ ) cos θ r = \frac{h^2/\mu}{1 + (C/\mu)\cos\theta} r=1+(C/μ)cosθh2/μ
这就是著名的轨道方程,其中 θ \theta θ是真近点角,即位置矢量与偏心率矢量之间的夹角。如果我们定义偏心率 e = C / μ e = C/\mu e=C/μ,参数 p = h 2 / μ p = h^2/\mu p=h2/μ,那么轨道方程可以写为更为常见的形式:
r = p 1 + e cos θ r = \frac{p}{1 + e\cos\theta} r=1+ecosθp
这个方程描述了一个圆锥曲线,具体是哪种类型取决于偏心率 e e e的值:
- 当 0 < e < 1 0 < e < 1 0<e<1时,轨道是椭圆
- 当 e = 0 e = 0 e=0时,轨道是圆
- 当 e = 1 e = 1 e=1时,轨道是抛物线
- 当 e > 1 e > 1 e>1时,轨道是双曲线
这个优雅的方程不仅是轨道力学的核心,也是人类理解宇宙运动规律的重要里程碑。从克普勒通过观测数据归纳出的行星运动定律,到牛顿通过理论推导得出的轨道方程,展现了科学认知从现象到本质的飞跃。
2. 轨道类型与特性
在掌握了二体问题的数学描述后,我们现在深入探讨不同类型轨道的几何特性和物理含义。正如伟大的轨道力学学者沃利·安德森(Wally Anderson)所言:"轨道的多样性如同宇宙交响乐中的不同乐章,每一种都有其独特的韵律与旋律。"通过理解各类轨道的特性,我们能更深刻地把握航天器设计与任务规划的核心要素。
2.1 圆轨道
圆轨道是最简单的轨道类型,其偏心率 e = 0 e=0 e=0。在这种情况下,轨道方程简化为:
r = p 1 + 0 ⋅ cos θ = p = h 2 μ r = \frac{p}{1 + 0 \cdot \cos\theta} = p = \frac{h^2}{\mu} r=1+0⋅cosθp=p=μh2
这表明在圆轨道上,天体到中心天体的距离 r r r保持不变。圆轨道有几个重要的特性:
-
速度恒定:圆轨道上的天体保持恒定速度运动,其大小为:
v 圆 = μ r v_{\text{圆}} = \sqrt{\frac{\mu}{r}} v圆=rμ
这一特性使得圆轨道在卫星设计中具有特殊意义,因为恒定的速度意味着恒定的动能和稳定的轨道条件。
-
周期与半径的关系:圆轨道的周期 T T T与半径 r r r满足:
T = 2 π r 3 μ T = 2\pi\sqrt{\frac{r^3}{\mu}} T=2πμr3
这正是开普勒第三定律的表现形式。例如,对于近地圆轨道,随着高度的增加,轨道周期也相应增大。
-
能量最小原理:在所有连接两点的轨道中,圆轨道具有最小的能量。圆轨道的机械能为:
E 圆 = − μ 2 r E_{\text{圆}} = -\frac{\mu}{2r} E圆=−2rμ
这一特性在轨道转移设计中具有重要意义,因为从一个圆轨道转移到另一个圆轨道需要提供能量差。
圆轨道在实际应用中非常重要。例如,许多通信卫星和导航卫星都部署在近似圆形的轨道上,以保持对地面的稳定覆盖。地球同步轨道(GEO)就是一种特殊的圆轨道,其半径约为42,164公里,周期恰好为一个恒星日(23小时56分4秒)。
2.2 椭圆轨道
当偏心率 0 < e < 1 0 < e < 1 0<e<1时,轨道呈椭圆形。椭圆轨道是太阳系中行星运动的典型轨道形式,也是许多人造卫星的常见轨道类型。
椭圆轨道具有以下几个关键特性:
-
变化的径向距离:在椭圆轨道上,天体到中心天体的距离不断变化。最近距离称为近拱点(periapsis),最远距离称为远拱点(apoapsis)。对于绕地球的轨道,这两个点通常称为近地点(perigee)和远地点(apogee)。它们的距离分别为:
r p = a ( 1 − e ) r_p = a(1-e) rp=a(1−e)
r a = a ( 1 + e ) r_a = a(1+e) ra=a(1+e)其中 a a a是椭圆的半长轴。
-
变化的速度:根据角动量守恒,在椭圆轨道上,天体的速度也在不断变化。在近拱点速度最大,在远拱点速度最小:
v p = μ a 1 + e 1 − e 2 v_p = \sqrt{\frac{\mu}{a}}\frac{1+e}{\sqrt{1-e^2}} vp=aμ1−e21+e
v a = μ a 1 − e 1 − e 2 v_a = \sqrt{\frac{\mu}{a}}\frac{1-e}{\sqrt{1-e^2}} va=aμ1−e21−e这种速度变化符合开普勒第二定律,即等面积定律。
-
轨道周期:椭圆轨道的周期 T T T仅与半长轴 a a a有关,与偏心率无关:
T = 2 π a 3 μ T = 2\pi\sqrt{\frac{a^3}{\mu}} T=2πμa3
这是开普勒第三定律的一般形式。对于地球卫星,半长轴越大,轨道周期越长。
-
机械能:椭圆轨道的机械能与半长轴直接相关:
E = − μ 2 a E = -\frac{\mu}{2a} E=−2aμ
这表明半长轴越大,机械能越高(负值越小)。
椭圆轨道在航天工程中有广泛应用。例如,地球观测卫星常常采用椭圆轨道,以便在近地点获得高分辨率图像,同时在较长的轨道周期内覆盖更大的地面区域。莫尔尼亚轨道(Molniya orbit)是一种特殊的高偏心率椭圆轨道,周期约为12小时,常被用于覆盖高纬度地区的通信卫星。
另一个重要应用是霍曼转移轨道(Hohmann transfer orbit),这是一种连接两个共面圆轨道的椭圆轨道,是能量最优的轨道转移方式。霍曼转移在卫星轨道机动和行星际飞行中都有重要应用。
2.3 抛物线轨道
当偏心率 e = 1 e=1 e=1时,轨道呈抛物线形。抛物线轨道是开放轨道,天体从无穷远处接近中心天体,然后又返回无穷远处,不会闭合。
抛物线轨道的特性包括:
-
逃逸能量:抛物线轨道的总能量恰好为零,这意味着天体具有恰好能够摆脱中心天体引力束缚的最小能量。这个能量对应的速度称为逃逸速度:
v 逃逸 = 2 μ r v_{\text{逃逸}} = \sqrt{\frac{2\mu}{r}} v逃逸=r2μ
对于地球表面,逃逸速度约为11.2公里/秒。
-
渐近行为:在无穷远处,抛物线轨道的速度趋近于零,但永远无法完全达到零。
-
单次飞越:抛物线轨道的天体只会对中心天体进行一次飞越,不会返回。
抛物线轨道在实际航天任务中很少精确实现,因为即使是微小的速度偏差也会导致轨道成为椭圆或双曲线。但是,抛物线轨道作为边界情况有重要的理论意义,它代表了闭合轨道和开放轨道的分界。
一些彗星的轨道接近抛物线形状,它们可能是首次接近太阳的彗星,来自遥远的奥尔特云。这些彗星可能只造访太阳系一次,然后永远离开,或者在太阳和行星的引力作用下改变轨道,转变为椭圆或双曲线轨道。
2.4 双曲线轨道
当偏心率 e > 1 e>1 e>1时,轨道呈双曲线形。与抛物线轨道类似,双曲线轨道也是开放的,天体进入系统后会经过一次飞越,然后永远离开。
双曲线轨道的主要特性包括:
-
超逃逸能量:双曲线轨道的总能量为正值,表明天体具有超过逃逸能量的动能。双曲线轨道的机械能为:
E = μ 2 a E = \frac{\mu}{2a} E=2aμ
注意这里的 a a a是双曲线的半主轴,为负值。
-
超逃逸速度:双曲线轨道上的天体速度大于逃逸速度。在无穷远处,天体仍保持一个剩余速度,称为超逃逸速度或双曲超速:
v ∞ = μ ∣ a ∣ v_{\infty} = \sqrt{\frac{\mu}{|a|}} v∞=∣a∣μ
这个参数在行星际飞行设计中非常重要。
-
偏转角:双曲线轨道的一个重要参数是偏转角,即天体接近和离开中心天体的渐近方向之间的夹角。偏转角 δ \delta δ与偏心率有关:
δ = 2 arcsin ( 1 e ) \delta = 2\arcsin\left(\frac{1}{e}\right) δ=2arcsin(e1)
偏转角越小,表示飞越过程中方向变化越小,对应的偏心率越大。
双曲线轨道在航天工程中有几个重要应用:
-
行星际飞行:行星际探测器通常以双曲线轨道离开地球。例如,旅行者1号和2号、新视野号等探测器都以双曲线轨道飞向外太阳系。
-
引力助推:探测器可以利用行星的引力场进行双曲线飞越,改变速度方向和大小,这种技术称为引力助推或引力弹弓。引力助推可以显著节省燃料,是深空探测任务的关键技术。例如,卡西尼号探测器在前往土星的途中,利用金星(两次)、地球和木星的引力助推,才最终到达目的地。
-
行星大气探测:某些探测任务会设计低空双曲线飞越,以便在高速飞过行星大气层时收集数据,同时避免被捕获。
在双曲线轨道设计中,超逃逸速度 v ∞ v_{\infty} v∞和近拱点距离 r p r_p rp是两个关键参数。通过调整这两个参数,可以控制偏转角和轨道形状,满足不同的任务需求。
2.5 轨道类型的比较与转换
不同类型的轨道代表了二体问题的不同解,它们之间存在能量层级关系:
E 椭圆 < E 抛物线 = 0 < E 双曲线 E_{\text{椭圆}} < E_{\text{抛物线}} = 0 < E_{\text{双曲线}} E椭圆<E抛物线=0<E双曲线
从一种轨道转换到另一种轨道需要改变能量,这通常通过推进系统实现。例如,从圆轨道转到椭圆轨道,或从椭圆轨道转到双曲线轨道,都需要增加能量;反之则需要减少能量,通常通过逆向推进或气动制动实现。
在设计轨道转换时,霍曼转移是最常用的方法。对于共面圆轨道间的转移,霍曼转移提供了最小能量解。对于非共面轨道,需要同时考虑面内机动和面外机动,这通常涉及到更复杂的优化问题。
在实际应用中,卫星和航天器常常需要在不同轨道间转换。例如,地球同步卫星通常先进入低地球轨道,然后通过一系列轨道机动,包括霍曼转移和倾角变化,最终到达目标轨道。这种分段转移策略既考虑了能量效率,也兼顾了工程实现的可行性。
轨道类型的选择取决于具体的任务需求。例如,近地观测任务通常选择低地球圆轨道或椭圆轨道;通信卫星可能选择地球同步圆轨道或高偏心率椭圆轨道;深空探测任务则需要设计适当的双曲线逃逸轨道。理解各种轨道类型的特性,是轨道设计的基础和前提。
3. 轨道根数与轨道确定
理解了轨道的数学描述和各类轨道的特性后,我们需要一套系统的参数来唯一确定一个轨道。这套参数就是轨道根数(orbital elements)。正如著名航天动力学专家瓦拉多(David Vallado)所说:"轨道根数是航天器的’地址’,它告诉我们航天器在太空中的确切位置和运动状态。"接下来,我们将详细讨论轨道根数的含义及其确定方法。
3.1 经典轨道根数体系
经典轨道根数也称为开普勒轨道要素,用六个参数完整描述一个轨道及天体在轨道上的位置。这六个参数分为三类:
-
描述轨道大小和形状的参数:
- 半长轴 a a a:表示轨道的大小
- 偏心率 e e e:表示轨道的形状
-
描述轨道空间方向的参数:
- 轨道倾角 i i i:轨道平面与参考平面(通常是地球赤道面)的夹角
- 升交点赤经 Ω \Omega Ω:升交点(轨道平面与参考平面的交线)与参考方向(通常是春分点方向)的夹角
- 近地点幅角 ω \omega ω:升交点方向与近地点方向的夹角(在轨道平面内测量)
-
描述天体在轨道上位置的参数:
- 真近点角 θ \theta θ 或 平近点角 M M M:描述天体在轨道上的位置
这六个参数共同构成了一套完整的轨道描述体系。在实际应用中,有时会使用半通径 p = a ( 1 − e 2 ) p = a(1-e^2) p=a(1−e2) 替代半长轴,尤其是在处理近圆轨道或抛物线轨道时;也可能使用近地点距离 r p = a ( 1 − e ) r_p = a(1-e) rp=a(1−e) 和远地点距离 r a = a ( 1 + e ) r_a = a(1+e) ra=a(1+e) 来表达轨道特征。
轨道根数的几何意义非常直观。例如,设想一个参考平面(如地球赤道面)和一个参考方向(如春分点方向)。首先,通过升交点赤经 Ω \Omega Ω 确定升交点的方向;然后,轨道倾角 i i i 确定轨道平面相对于参考平面的倾斜程度;接着,近地点幅角 ω \omega ω 确定近地点在轨道平面内的方向;最后,半长轴 a a a 和偏心率 e e e 确定轨道的大小和形状,真近点角 θ \theta θ 确定天体的瞬时位置。
3.2 轨道根数的数学表达
轨道根数与天体的位置和速度矢量有着明确的数学关系。给定位置矢量 r ⃗ \vec{r} r 和速度矢量 v ⃗ \vec{v} v,我们可以计算轨道根数;反之,给定轨道根数,我们也可以计算任意时刻的位置和速度矢量。
首先,我们可以计算角动量矢量 h ⃗ \vec{h} h 和偏心率矢量 e ⃗ \vec{e} e:
h ⃗ = r ⃗ × v ⃗ \vec{h} = \vec{r} \times \vec{v} h=r×v
e ⃗ = 1 μ [ v ⃗ × h ⃗ − μ r ⃗ r ] \vec{e} = \frac{1}{\mu}\left[ \vec{v} \times \vec{h} - \mu\frac{\vec{r}}{r} \right] e=μ1[v×h−μrr]
角动量矢量 h ⃗ \vec{h} h 垂直于轨道平面,其大小与轨道面积速率成正比。偏心率矢量 e ⃗ \vec{e} e 指向近地点方向,其大小就是轨道偏心率。
接下来,我们定义轨道平面的节线矢量 n ⃗ \vec{n} n,它位于参考平面内,指向升交点方向:
n ⃗ = k ^ × h ⃗ \vec{n} = \hat{k} \times \vec{h} n=k^×h
其中 k ^ \hat{k} k^ 是参考平面的法向量单位矢量。
有了这些基本矢量,我们可以计算轨道根数:
-
半长轴 a a a:
a = h 2 μ ( 1 − e 2 ) a = \frac{h^2}{\mu(1-e^2)} a=μ(1−e2)h2
对于抛物线轨道, e = 1 e=1 e=1,半长轴趋于无穷大;对于双曲线轨道, e > 1 e>1 e>1,半长轴为负值。
-
偏心率 e e e:
e = ∣ e ⃗ ∣ e = |\vec{e}| e=∣e∣
-
轨道倾角 i i i:
cos i = h ⃗ ⋅ k ^ h \cos i = \frac{\vec{h} \cdot \hat{k}}{h} cosi=hh⋅k^
轨道倾角的范围是 0 ∘ ≤ i ≤ 18 0 ∘ 0^\circ \leq i \leq 180^\circ 0∘≤i≤180∘。当 i < 9 0 ∘ i < 90^\circ i<90∘ 时,轨道为顺行;当 i > 9 0 ∘ i > 90^\circ i>90∘ 时,轨道为逆行。
-
升交点赤经 Ω \Omega Ω:
cos Ω = n ⃗ ⋅ i ^ n \cos \Omega = \frac{\vec{n} \cdot \hat{i}}{n} cosΩ=nn⋅i^
sin Ω = n ⃗ ⋅ j ^ n \sin \Omega = \frac{\vec{n} \cdot \hat{j}}{n} sinΩ=nn⋅j^其中 i ^ \hat{i} i^ 和 j ^ \hat{j} j^ 是参考坐标系的两个基本单位矢量。升交点赤经的范围是 0 ∘ ≤ Ω < 36 0 ∘ 0^\circ \leq \Omega < 360^\circ 0∘≤Ω<360∘。
-
近地点幅角 ω \omega ω:
cos ω = n ⃗ ⋅ e ⃗ n e \cos \omega = \frac{\vec{n} \cdot \vec{e}}{ne} cosω=nen⋅e
sin ω = h ⃗ ⋅ ( n ⃗ × e ⃗ ) h n e \sin \omega = \frac{\vec{h} \cdot (\vec{n} \times \vec{e})}{hne} sinω=hneh⋅(n×e)近地点幅角的范围是 0 ∘ ≤ ω < 36 0 ∘ 0^\circ \leq \omega < 360^\circ 0∘≤ω<360∘。
-
真近点角 θ \theta θ:
cos θ = e ⃗ ⋅ r ⃗ e r \cos \theta = \frac{\vec{e} \cdot \vec{r}}{er} cosθ=ere⋅r
sin θ = h ⃗ ⋅ ( e ⃗ × r ⃗ ) h e r \sin \theta = \frac{\vec{h} \cdot (\vec{e} \times \vec{r})}{her} sinθ=herh⋅(e×r)真近点角的范围是 0 ∘ ≤ θ < 36 0 ∘ 0^\circ \leq \theta < 360^\circ 0∘≤θ<360∘。
这些公式展示了轨道根数与位置、速度之间的转换关系。在实际计算中,我们通常使用更复杂的算法来确保数值稳定性,特别是在处理近圆轨道( e ≈ 0 e \approx 0 e≈0)或赤道轨道( i ≈ 0 ∘ i \approx 0^\circ i≈0∘)时。
3.3 特殊轨道的根数表示
某些特殊轨道有其特定的根数特征,理解这些特征有助于我们快速识别轨道类型:
-
圆轨道( e = 0 e = 0 e=0):
对于圆轨道,近地点的位置不确定,因此近地点幅角 ω \omega ω 没有明确定义。在这种情况下,我们通常使用"升交点至航天器的角度"替代,这个角度称为纬度幅角(argument of latitude) u = ω + θ u = \omega + \theta u=ω+θ。
-
赤道轨道( i = 0 ∘ i = 0^\circ i=0∘):
对于赤道轨道,没有明确的升交点,因此升交点赤经 Ω \Omega Ω 和近地点幅角 ω \omega ω 都不确定。在这种情况下,我们通常使用近点赤经(longitude of periapsis) Π = Ω + ω \Pi = \Omega + \omega Π=Ω+ω 来描述近地点的位置。
-
圆赤道轨道( e = 0 e = 0 e=0, i = 0 ∘ i = 0^\circ i=0∘):
这是最特殊的情况,既没有明确的近地点,也没有明确的升交点。在这种情况下,我们使用真赤经(true longitude) l = Ω + ω + θ l = \Omega + \omega + \theta l=Ω+ω+θ 来描述航天器的位置。
这些特殊情况提醒我们,在处理轨道问题时,应当注意轨道根数的奇异性,并在必要时采用替代参数。
3.4 轨道确定的基本方法
轨道确定是指通过观测数据确定航天器或天体的轨道参数。这是航天工程中的一个基本问题,也是轨道力学理论应用的重要领域。
最基本的轨道确定方法是基于位置和速度的确定。如果我们在某一时刻知道航天器的精确位置和速度,就可以通过前面介绍的公式计算轨道根数,从而确定整个轨道。
然而,在实际应用中,我们通常无法直接获得航天器的位置和速度。相反,我们只能获得一系列观测数据,如角度测量、距离测量或多普勒频移测量。这就需要更复杂的轨道确定方法。
最经典的轨道确定方法之一是高斯法(Gauss’s method),它利用三个位置观测值确定轨道。高斯法的基本思想是,任何轨道都由六个参数唯一确定,因此需要六个独立的观测量。三个位置观测值提供了六个标量(三个二维向量),恰好足以确定轨道。
另一种常用的方法是拉普拉斯法(Laplace’s method),它利用角度观测和它们的时间导数来确定轨道。拉普拉斯法特别适用于处理角度观测数据,如从地面望远镜获得的观测结果。
在现代航天工程中,我们通常使用批处理估计(batch estimation)或顺序估计(sequential estimation)方法,如最小二乘法和卡尔曼滤波器,来处理大量的、可能有噪声的观测数据。这些方法不仅能够确定最优的轨道参数,还能提供参数的不确定性估计。
轨道确定是一个持续的过程。随着新观测数据的获取,我们会不断更新轨道估计,提高其精度。这种动态轨道确定对于航天器导航、空间目标跟踪和碰撞避免都至关重要。
3.5 实际应用中的考量
在实际应用中,轨道确定和表示面临许多挑战,需要考虑多种因素:
-
轨道演化:实际轨道会受到各种摄动力的影响而不断变化。因此,轨道根数通常会标注一个参考时刻(epoch),表示这组根数在该时刻的有效性。对于长期轨道预测,需要考虑摄动效应。
-
观测误差:所有观测数据都存在误差,这会导致轨道确定的不确定性。现代轨道确定系统通常会提供协方差矩阵,表示轨道参数的不确定性及其相关性。
-
根数奇异性:如前所述,某些特殊轨道会导致轨道根数的奇异性。在这种情况下,需要使用替代参数,如等价元素或非奇异元素。
-
不同的参考系统:轨道根数依赖于所选择的参考系统。常用的参考系统包括地心惯性系统(ECI)、日心黄道系统(HCI)等。在使用和交换轨道数据时,必须明确参考系统。
-
二体假设的局限性:轨道根数基于二体运动假设。在强摄动环境中,如地球低轨道或木星近距离飞越,二体假设可能不够精确,需要更复杂的轨道表示方法。
-
现代轨道表示格式:在实际工程中,常用的轨道表示格式包括两行轨道根数(TLE)、状态转移矩阵(STM)和精密星历表(ephemeris)等。每种格式都有其适用范围和精度特点。
理解这些实际考量有助于我们在轨道分析和设计中做出合理选择,避免潜在陷阱。
思考题
-
证明角动量守恒定律。具体来说,从二体问题的相对运动方程出发,证明角动量矢量 h ⃗ = r ⃗ × v ⃗ \vec{h} = \vec{r} \times \vec{v} h=r×v 是一个常矢量。并讨论这一结论对轨道形状的影响。
-
考虑一个近地卫星,轨道半长轴为7000公里,偏心率为0.1。计算该卫星在近地点和远地点的速度和高度。讨论卫星在这两个点的动能和势能分布情况,并解释能量守恒原理在轨道运动中的体现。
-
探讨轨道倾角的物理意义。特别地,分析不同倾角(如0°、30°、60°、90°、120°和180°)对轨道覆盖范围和航天器可见性的影响。在什么情况下我们会选择极轨道(i≈90°)或逆行轨道(i>90°)?
-
已知一颗卫星在某一时刻的位置矢量 r ⃗ = ( 5000 , 3000 , 2000 ) \vec{r} = (5000, 3000, 2000) r=(5000,3000,2000) 公里,速度矢量 v ⃗ = ( − 3 , 5 , 1 ) \vec{v} = (-3, 5, 1) v=(−3,5,1) 公里/秒,假设地球引力参数 μ = 398600 \mu = 398600 μ=398600 立方公里/平方秒。计算该卫星的轨道根数(半长轴、偏心率、轨道倾角、升交点赤经、近地点幅角和真近点角)。
-
分析霍曼转移轨道的能量特性。证明在两个共面圆轨道之间,霍曼转移是能量最优的转移方式。计算从300公里高度的圆轨道转移到36000公里高度的地球同步轨道所需的总速度增量,并讨论转移过程中的能量变化。
-
讨论双曲线轨道的物理特性与应用。特别地,分析双曲线轨道中的偏转角与偏心率的关系,并解释这一关系在引力助推任务设计中的应用价值。
-
从轨道周期角度比较开普勒三大定律与牛顿力学理论。具体推导开普勒第三定律在牛顿万有引力定律框架下的精确表达式,并分析两颗恒星双星系统的轨道周期与质量关系。
-
探讨二体问题中的Lagrange点的物理意义及稳定性特征。特别分析L1、L2和L4、L5点的不同稳定性特征,并讨论这些特殊点在现代航天任务中的应用。
-
分析轨道摄动对二体问题理想解的影响。特别讨论地球非球形引力场(主要是J2项)如何影响卫星的升交点赤经和近地点幅角的长期演化。
-
考察轨道衰变问题。假设一颗卫星在低地球轨道运行,受到大气阻力的影响,讨论其轨道参数(特别是半长轴和偏心率)的变化规律,并推导出轨道寿命的估算公式。
-
探讨开普勒方程的物理意义及数值求解方法。对比分析牛顿迭代法、级数展开法和几何法在解决不同偏心率轨道的开普勒方程时的适用性和精度。
-
讨论二体近似在实际航天工程中的适用范围和局限性。具体分析在何种情况下需要考虑高阶摄动模型,以及不同摄动力对轨道长期演化的影响程度。
习题
-
计算题:一颗卫星围绕地球运行在圆轨道上,高度为500公里。求:
(a) 卫星的轨道周期
(b) 卫星的轨道速度
© 如果要将该卫星转移到800公里高度的圆轨道,使用霍曼转移轨道需要的总速度增量 -
证明题:证明二体问题中,对于椭圆轨道,轨道周期T与半长轴a之间的关系为 T = 2 π a 3 μ T = 2\pi\sqrt{\frac{a^3}{\mu}} T=2πμa3。
-
分析题:已知一颗卫星的轨道根数为:a = 8000公里,e = 0.2,i = 45°,Ω = 30°,ω = 60°,θ = 0°。
(a) 计算卫星在近地点的位置和速度矢量
(b) 计算卫星的轨道周期
© 讨论这颗卫星是否会穿过范艾伦辐射带(假设内带位于海拔1000-6000公里,外带位于海拔15000-25000公里) -
应用题:一个月球探测任务需要设计从地球到月球的转移轨道。假设地球和月球处于同一平面内,地月距离为384400公里。
(a) 设计一条霍曼转移轨道从地球低轨道(200公里高)到月球轨道
(b) 计算所需的发射速度增量和到达月球附近的速度
© 如果需要被月球捕获进入环月轨道(高度为100公里),需要额外的减速量是多少? -
概念题:比较并对比三种不同类型的轨道(圆轨道、椭圆轨道和双曲线轨道)在以下方面的特点:
(a) 能量特性
(b) 角动量特性
© 航天器速度变化规律
(d) 适用的航天任务类型 -
设计题:为一颗地球观测卫星设计合适的轨道。该卫星需要:
(a) 每天在同一地方经过大约同一时间(太阳同步)
(b) 覆盖全球大部分区域
© 具有足够的分辨率以观测地表特征(假设传感器要求高度不超过1000公里)
请给出轨道设计方案,包括轨道类型、高度、倾角和其他相关参数,并说明理由。 -
综合题:一个行星际探测任务需要从地球飞往火星。
(a) 描述地球和火星之间的霍曼转移轨道特性
(b) 计算该转移轨道的飞行时间
© 讨论发射窗口的概念及其对此类任务的重要性
(d) 如果考虑使用引力助推技术,可能的飞行路径有哪些?这些方案相比直接转移有何优缺点? -
工程实践题:在轨道确定过程中,我们通常需要从观测数据中推导出轨道参数。
(a) 讨论不同类型观测数据(角度观测、距离测量、多普勒测量等)的优缺点
(b) 描述一种常用的轨道确定算法,并分析其适用条件和局限性
© 如果观测数据存在噪声,如何评估轨道确定的不确定性? -
轨道变轨题:一颗卫星需要从近地点高度200公里、远地点高度1000公里的椭圆轨道变轨至500公里高的圆轨道。
(a) 设计两种不同的变轨方案(如双脉冲和三脉冲方案)
(b) 计算各方案所需的总速度增量
© 比较各方案的优缺点,并推荐最优方案 -
轨道寿命题:一颗微小卫星(立方体卫星)在轨道高度300公里处释放。已知该卫星质量为4公斤,横截面积为0.04平方米,阻力系数为2.2。
(a) 估算该卫星的轨道寿命(假设太阳活动处于中等水平)
(b) 如果初始轨道偏心率为0.01,讨论偏心率如何随时间演化
© 提出一种延长该卫星轨道寿命的方法,并定量分析其效果 -
开普勒方程求解题:某卫星在偏心率为0.3的椭圆轨道上运行。已知其平近点角M = 60°。
(a) 使用牛顿迭代法求解其偏近点角E
(b) 进一步计算其真近点角ν
© 如果卫星距离地心为8000公里,求其轨道半长轴 -
摄动分析题:一颗侦察卫星在高度800公里、倾角98°的近圆轨道上运行。
(a) 分析J2项摄动对该卫星轨道的主要影响
(b) 计算升交点赤经的日进动率
© 如果希望设计一个回归轨道(地面轨迹定期重复),轨道高度应如何调整?
参考文献
-
Bate, R. R., Mueller, D. D., & White, J. E. (2020). Fundamentals of Astrodynamics. Dover Publications.
-
Vallado, D. A. (2013). Fundamentals of Astrodynamics and Applications (4th ed.). Microcosm Press.
-
Curtis, H. D. (2020). Orbital Mechanics for Engineering Students (4th ed.). Butterworth-Heinemann.
-
刘林. (2017). 航天器轨道力学基础. 北京:国防工业出版社.
-
崔祜涛, 黄翔宇. (2019). 航天器轨道理论与应用. 哈尔滨:哈尔滨工业大学出版社.
-
Battin, R. H. (1999). An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series.
-
Prussing, J. E., & Conway, B. A. (2012). Orbital Mechanics (2nd ed.). Oxford University Press.
-
Chobotov, V. A. (Ed.). (2002). Orbital Mechanics (3rd ed.). AIAA Education Series.