第一章:力学基础
飞行与力学
飞机的飞行和机动是力学原理的绝佳展示。然而,本书并非专门讲述力学,而是聚焦于飞行,旨在以简明有趣的方式解释飞机如何飞行;力学在此仅作为理解飞行的辅助工具。在本章中,我将概述与飞行最密切相关的几个力学原理。
力和运动第一定律
力学的一个基本原理是:静止的物体将保持静止状态,运动的物体将保持匀速运动,除非受到外力作用。这实际上是牛顿第一运动定律的通俗表述。
作用于物体的力可分为两类:
(1) 外部机械力,如推力或拉力
(2) 体积力,如重力、电磁力和静电力
在飞行力学中,相关的外部力包括喷气发动机或螺旋桨产生的推力,以及空气流动产生的阻力。另一种不太明显但同样重要的外部力是反作用力。例如,当物体放在桌面上时,桌子会产生向上的反作用力,正好平衡物体的重量。在飞行力学中,我们主要关注的体积力是重力,即物体的重量。
力的计量单位在国际单位制(SI)中为牛顿(N),在英制或联邦单位制中为磅力(lbf)。本书中的例题和问题将同时使用这两种单位制。
质量
质量可以简单理解为物体中所含物质的数量。物体的质量越大,需要越大的力才能使其从静止状态开始移动,或改变其运动速度。
质量在SI单位制中以千克(kg)为单位,在英制和联邦单位制中以磅(lb)为单位。遗憾的是,重量(一种力)的单位常常也使用相同的名称,这导致了很大的混淆,稍后将在"单位"部分详细解释。在本书中,我们将始终使用千克表示质量,牛顿表示重量。
动量
决定物体停止难度的物理量是动量,即质量与速度的乘积。
一个20千克、以2米/秒移动的物体具有40千克·米/秒的动量,与一个10千克、以4米/秒移动的物体的动量相同。前者质量更大而速度较低,后者质量较小但速度更快,两者停止的难度相同。汽车比子弹质量大得多但速度相对较低,而子弹质量小得多但速度极高,两者都难以停止,都能对试图快速阻止它们的物体造成严重损害。
要改变物体(甚至是空气质量)的动量,必须施加力。力等于动量的变化率。
平衡力
当两支拔河队在绳子上施加相等的力时,可能会出现一段时间的僵持状态,只有大量的呐喊和喘息声!两队在绳子两端施加了大小相同的力,因此力处于平衡状态,没有动量变化。类似的力平衡情况在日常生活中更为常见。例如,当你向下按压放在桌面上的物体时,桌子会以相等且相反的反作用力抵抗,使力保持平衡。当然,如果你用力过猛,桌子可能会断裂,此时力将失去平衡,导致突然且意外的加速。

再举一个例子,考虑一架被小型飞机拖曳的滑翔机,如图1.1所示。如果飞机和滑翔机以恒定速度直线平飞,那么飞机对拖曳绳施加的拉力必须恰好被作用在滑翔机上的相等且相反的空气动力学阻力所平衡。此时,力处于平衡状态。
有些人难以相信这些力真的完全相等。他们认为,飞机向前拉的力肯定比滑翔机向后拉的力稍大一些;否则,是什么使它们向前移动?实际上,使它们向前移动的正是它们已经在向前移动的事实,根据物理定律,它们将继续保持这种运动状态,除非有外力改变。当力处于平衡状态时,没有任何因素能改变这种平衡,因此飞机和滑翔机将保持恒定速度移动。
不平衡力
在上述滑翔机的例子中,如果拖曳飞机的飞行员突然增加发动机油门,会发生什么情况?拖曳绳上的拉力会增加,但初始时滑翔机上的空气动力学阻力不会改变。因此,力将不再平衡。当然,空气阻力仍然存在,所以拖曳绳上的部分拉力必须用于克服这一阻力,但剩余的力将导致滑翔机加速,如图1.2所示的自由体图所示。
这引出了牛顿第二定律,该定律表明,当力不平衡时,加速度与力成正比,与物体质量成反比:
a = F / m a=\mathrm{F/m} a=F/m

其中 a a a是加速度, m m m是物体质量, F F F是力。这种关系更常见的表达式是:
F = m × a F=m \times a F=m×a
惯性力
在上述加速滑翔机的例子中,飞机施加在绳子一端的力大于作用在滑翔机另一端的空气阻力。然而,从绳子的角度看,它施加在滑翔机牵引钩上的力必须等于空气阻力加上使滑翔机加速所需的力。换句话说,绳子两端的力处于平衡状态(如果忽略绳子自身质量)。绳子必须施加以产生加速度的额外力被称为惯性力。
对于绳子而言,无论其远端的力是由于绑在墙上产生的反作用力,还是由于连接到正在加速的滑翔机上,效果都是相同的——它在两端感受到相等且相反的拉力。然而,从滑翔机的角度看,情况完全不同;如果有一个与绳子拉力相等且相反的力,就不会发生加速。滑翔机上的力是不平衡的。
在应用惯性力概念时必须格外谨慎。在考虑拖曳绳中的应力时,可以在一端施加拉力,在另一端施加由空气阻力加上被加速物体的惯性引起的相等且相反的力。然而,在分析飞机和滑翔机的运动时,不应包括平衡惯性力,否则就不会有加速。应该像图1.2那样绘制自由体图。
这引出了常被误解的牛顿第三定律:每一个作用力都有一个大小相等、方向相反的反作用力。例如,当一本书放在桌子上时,桌子产生的反作用力与重力相等且方向相反。但需要注意的是,加速滑翔机的力产生的反作用不是力,而是滑翔机的加速度。
重量
有一种我们都熟悉的特殊力——重力。我们都知道,任何位于地球附近的物体都会被吸引向地球。较少为人所知的是,这是一种类似磁力的相互吸引。地球被吸引向物体的力与物体被吸引向地球的力大小相同。
所有物体之间都存在相互吸引。这种力取决于两个物体的质量和它们之间的距离,由以下公式表示:
F = G m 1 m 2 d 2 F=\frac{Gm_{1}m_{2}}{d^{2}} F=d2Gm1m2
其中 G G G是万有引力常数,值为 6.67 × 1 0 − 11 6.67 \times 10^{-11} 6.67×10−11 N m 2 / k g 2 \mathrm{N} \mathrm{m}^{2}/\mathrm{kg}^{2} Nm2/kg2, m 1 m_{1} m1和 m 2 m_{2} m2是两个物体的质量, d d d是它们之间的距离。使用上述公式,可以轻松计算两个相距一米的一千克质量物体之间的吸引力。这个力非常微小。然而,当其中一个质量是地球时,吸引力就变得相当大,这就是我们所称的重力。在航空学的大多数实际问题中,我们考虑的物体通常在地球表面或相对接近地球表面,因此距离 d d d基本恒定,而地球质量也是恒定的,所以我们可以将上述公式简化为:
F = m × g F=m \times g F=m×g

其中 m m m是物体质量, g g g是重力常数,它考虑了地球的质量和半径。在SI系统中, g g g的值为 9.81 m / s 2 9.81 \mathrm{m}/\mathrm{s}^{2} 9.81m/s2,在英制或联邦系统中为32 ft/ s 2 \mathrm{s}^{2} s2。
上述表达式中的力就是我们所知的重量。重量是物体被吸引向地球中心的力。实际上, g g g并非严格意义上的常数,因为地球不是一个完美的球体,表面附近的大块高密度岩石可能会导致局部引力略微增加。对于大多数航空计算而言,这些细微差异可以忽略。然而,一旦我们开始研究航天器或高空导弹,就不能再使用这个简化公式了。
重量是所谓体积力的一个典型例子。体积力与机械力不同,没有可见的直接施加方式。其他体积力的例子包括静电力和电磁力。
当飞机处于稳定水平飞行状态时,有两个垂直力作用于它,如图1.3所示。一个是外部施加的力,即空气流过机翼产生的升力,另一个是体积力,即重量。

重力加速度
地球表面附近的所有物体都受到重力的作用。如果没有相反的力,它们就会开始移动,加速。它们加速的速率与它们的质量无关。
由于重力(重量)的力 F = m × g F=m \times g F=m×g
但是,根据牛顿第二定律, F = m × a c c e l e r a t i o n F=m \times acceleration F=m×acceleration
通过将上述两个表达式相等,我们可以看到,由于重力的加速度在数值上等于重力常数 g g g,并且与质量无关。不出所料,许多人混淆了"重力常数"和"重力加速度"这两个术语,认为它们是同一回事。数值是相同的,但它们是不同的东西。如果一本书放在桌子上,那么重量由重力常数和质量的乘积给出,但它没有加速。如果它从桌子上掉下来,它将以等于重力常数值的速率加速。
这引出了羽毛和铅块的老问题;哪个会掉得更快?嗯,答案是在太空真空中,它们都会以相同的速率下落。然而,在大气中,羽毛会受到相对于加速重力(重量)更大的空气动力学阻力,因此羽毛会下落得更慢。
对于所有通过大气层下落的物体,都有一个速度,在这个速度下,空气动力学阻力等于重量,所以它们将停止加速。这个速度被称为终端速度,取决于物体的形状、密度和方向。人头朝下比平躺下落得更快。自由落体跳伞者利用后者的效果来控制自由落体时的下降速率。
质量、重量和g
物体的质量取决于其中的物质量,它不会随着其在地球上的位置而变化,如果我们将其放在月球上,它也不会有任何不同。然而,重量(由于重力的力)会改变,因为所谓的重力常数在月球上会不同,这是由于月球的质量较小,甚至在地球上的不同点之间也会略有不同。因此,下落物体加速的速率也会不同。在月球上,它会明显地下落得更慢,这可以从阿波罗宇航员看似慢动作的月球行走中观察到。
单位
度量单位系统(如英尺、米等)常常是混淆的主要来源。在欧洲的教育机构和大部分工业领域,目前普遍采用的是国际单位制(SI),这是一种特殊形式的公制系统。该系统的基本单位包括:千克(kg)表示质量(而非重量)、米(m)表示距离以及秒(s)表示时间。
温度可用摄氏度(℃)表示(相对于水的冰点测量),或用开尔文(K)表示(相对于绝对零度测量);0℃相当于273 K。摄氏度和开尔文的温度变化幅度完全相同,只是参考的起点或零点不同。值得注意的是,使用开尔文单位时不加度数符号°,例如我们写作273 K。
力(包括重量)的单位是牛顿(N),而非千克。需要警惕以千克为单位表示的重量——在欧洲某些地区仍然沿用的旧式(前SI)公制系统中,千克这一名称也用于表示重量或力。要将千克重转换为牛顿,只需乘以9.81即可。
SI被称为一个相干系统,这实际上意味着你可以直接将数值代入公式,而无需担心转换因子。例如,在力与质量和加速度关系的表达式中: F = m × a F=m \times a F=m×a,我们发现1牛顿的力作用于1千克的质量会产生1米/秒²的加速度。这与旧的英国"帝国"单位系统形成鲜明对比,在后者中,1磅的力作用于1磅的质量会产生32.18英尺/秒²的加速度。你可以想象这种系统会带来多少问题。注意,在这个系统中,"磅"这一名称同时用于表示两种不同的物理量:力和质量。
由于航空领域受美国影响较大,美国联邦单位和类似的帝国(英国)单位仍然被广泛使用。除了缺乏国际公认标准这一问题外,使用联邦或帝国单位还可能造成混淆,因为这些系统内部存在多种替代单位。特别是质量有两种替代单位:磅质量和斯勒格(相当于32.18磅质量)。斯勒格对大多数读者可能比较陌生,但它在航空工程中很常用,因为与SI单位一样,它构成了一个相干系统。1磅的力作用于一个斯勒格的质量会产生1英尺/秒²的加速度。正如你可能已经注意到的,这个系统中的其他两个基本单位是英尺和秒,温度则以华氏度测量。
这一切可能让人感到相当混乱,但更令人困扰的是,为了避免危险错误,国际导航和飞机操作惯例使用英尺表示高度,用节表示速度。节是每小时一海里(相当于0.5145米/秒)。海里比陆地英里长,为6080英尺而非5280英尺。最后一点令人困惑的是,行李通常以千克为单位称重(甚至不是牛顿)!
为了帮助读者,本书中的大多数问题和例子都采用SI单位。如果你遇到不熟悉的单位或混合单位,建议先将它们转换为SI单位,然后再进行计算。最后一个小提示是,在解决问题时,最好使用基本单位,所以在应用任何公式之前,先将毫米或千米转换为米。在航空的实际应用中,你将不得不习惯处理其他单位,如斯勒格和节,但让我们循序渐进。下面,我们给出一个使用SI单位计算的简单例子(见例1.1)。
例1.1
一架飞机的质量为 2000 k g 2000 kg 2000kg。在起飞过程中,除了克服摩擦和空气阻力所需的力外,还需要多大的力才能使其加速度达到 2 m / s 2 2 \mathrm{m}/\mathrm{s}^{2} 2m/s2?
解答
F = m × a F = m \times a F=m×a
F = 2000 kg × 2 m/s 2 F = 2000 \text{ kg} \times 2 \text{ m/s}^2 F=2000 kg×2 m/s2
F = 4000 N F = 4000 \text{ N} F=4000 N
这个例子展示了使用SI单位解决此类问题是多么简便。
许多关于力和质量关系的数值例题也涉及简单运动学原理,不熟悉这些原理的读者应该在解决例题前先阅读下一节内容。
运动学
总结运动学中的基本关系,即研究物体运动而不考虑作用力的学科,将有助于我们解决相关问题。
我们将只考虑两种简单情况:匀速运动和匀加速运动。
相关符号和单位如下:
- 时间 t t t(秒)
- 距离 s s s(米)
- 初始速度 u u u(米/秒)
- 最终速度 v v v(米/秒)
- 加速度 a a a(米/秒²)
匀速运动
当速度恒定为 v v v 米/秒时,行进距离等于速度乘以时间,即:
s = v t s = vt s=vt
匀加速运动
最终速度等于初始速度加上速度增量,即:
v = u + a t v = u + at v=u+at
行进距离等于初始速度乘以时间,再加上二分之一乘以加速度乘以时间的平方,即:
s = u t + 1 2 a t 2 s = ut + \frac{1}{2}at^2 s=ut+21at2
最终速度的平方等于初始速度的平方加上二倍加速度乘以距离,即:
v 2 = u 2 + 2 a s v^2 = u^2 + 2as v2=u2+2as
借助这些基于基本原理的简单公式,我们可以轻松解决匀速或匀加速运动的问题(参见例1.2至1.4)。
例1.2
一架飞机在起飞滑跑中从静止状态在10秒内达到90公里/小时的速度,其平均加速度是多少?
解答
初始速度 u = 0 u=0 u=0
最终速度 v = 90 k m / h = 25 m / s v=90 \mathrm{km}/\mathrm{h}=25 \mathrm{m}/\mathrm{s} v=90km/h=25m/s
时间 t = 10 s t=10 \mathrm{s} t=10s
求 a a a
由于我们需要关联 u u u、 v v v、 t t t 和 a a a,使用公式:
v = u + a t v=u+at v=u+at
25 = 0 + 10 a 25=0+10a 25=0+10a
a = 25 / 10 = 2.5 m / s 2 a=25/10=2.5 \mathrm{m}/\mathrm{s}^{2} a=25/10=2.5m/s2
例1.3
上例中的飞机在起飞滑跑过程中行进了多远?
解答
已知 u = 0 u=0 u=0, v = 25 m / s v=25 \mathrm{m}/\mathrm{s} v=25m/s, t = 10 s t=10 \mathrm{s} t=10s, a = 2.5 m / s 2 a=2.5 \mathrm{m}/\mathrm{s}^{2} a=2.5m/s2
求 s s s,可以使用公式:
s = u t + 1 2 a t 2 s=ut+\frac{1}{2}at^{2} s=ut+21at2
= 0 + 1 2 × 2.5 × 1 0 2 =0+\frac{1}{2} \times 2.5 \times 10^{2} =0+21×2.5×102
= 125 m =125 \mathrm{m} =125m
或者使用:
v 2 = u 2 + 2 a s v^{2}=u^{2}+2as v2=u2+2as
2 5 2 = 0 + 2 × 2.5 × s 25^2=0+2 \times 2.5 \times s 252=0+2×2.5×s
∴ s = 2 5 2 2 × 2.5 \therefore s=\frac{25^2}{2 \times 2.5} ∴s=2×2.5252
= 125 m =125 \mathrm{m} =125m
例1.4
一枚炸弹从高度3500米、以200节水平飞行的飞机上投下。忽略空气阻力,炸弹需要多长时间才能击中地面?炸弹应在目标前多远处释放?
解答
计算下落时间时,我们只需考虑垂直速度,释放时该速度为零。
u = 0 u=0 u=0
a = 重力加速度 = 9.81 m / s 2 a=\mathrm{重力加速度}=9.81 \mathrm{m}/\mathrm{s}^{2} a=重力加速度=9.81m/s2
s = 飞机到地面的垂直距离 = 3500 m s=\mathrm{飞机到地面的垂直距离} = 3500 \mathrm{m} s=飞机到地面的垂直距离=3500m
求 t t t
我们需要使用连接 u u u、 a a a、 s s s 和 t t t 的公式:
s = u t + 1 2 a t 2 s=ut+\frac{1}{2}at^{2} s=ut+21at2
∴ 3500 = 0 + 1 2 × 9.81 × t 2 \therefore 3500=0+\frac{1}{2} \times 9.81 \times t^{2} ∴3500=0+21×9.81×t2
∴ t 2 = 3500 × 2 9.81 = 713 \therefore t^{2}=\frac{3500 \times 2}{9.81}=713 ∴t2=9.813500×2=713
∴ t ≈ 27 秒 \therefore t \approx 27\text{秒} ∴t≈27秒
由于忽略了空气阻力,炸弹的水平速度在整个下落过程中保持不变,即与飞机速度相同(200节)。转换为米/秒: 200 × 1852 3600 ≈ 103 m / s \frac{200 \times 1852}{3600} \approx 103 \mathrm{m/s} 3600200×1852≈103m/s
因此,炸弹在27秒下落时间内向前行进的距离为 103 × 27 = 2781 m 103 \times 27 = 2781 \mathrm{m} 103×27=2781m。
这就是炸弹必须在目标前方释放的距离。
需要注意的是,在例1.4中我们忽略了空气阻力。考虑到我们研究的是飞行,这似乎有些不合理,因为飞行正是利用产生空气阻力的相同原理实现的。实际上,空气阻力对炸弹的影响至关重要,在实际轰炸中必须考虑这一因素。但学习时最好先从最简单的形式入手,然后逐步增加复杂性。随着复杂性的增加,我们会越来越接近真实情况,但如果一开始就考虑所有因素,问题会变得模糊不清,基本原理也难以突显。
附录3中提供了更多运动学的例题,建议不熟悉这类问题的读者通过这些例题进行练习。
曲线路径上的运动
我们已经强调过,物体倾向于保持相同的运动状态,这涉及方向和速度。因此,很明显,如果我们希望通过转弯或沿曲线路径行进来改变物体的运动,我们必须对其施加力,即使物体的速度不变,这一点也适用。这种力与加速飞机所需的力完全类似,也就是说:力必须与物体的质量和希望产生的加速度成正比。但是,绕弯的物体的加速度是什么?如果速度保持不变,实际上有加速度吗?加速度的方向又是什么?
让我们先回答最后一个问题。牛顿第二定律还有一部分尚未提及,即物体动量的变化率将与施加力的方向相同。如果物体的质量在转弯时不变,加速度必须与力的方向相同。但是,如果速度不变,是否存在加速度?答案是肯定的——因为速度是我们所说的矢量量,它既有大小又有方向,而速率只有大小。因此,如果运动方向改变,速度就会改变,即使速率保持不变。那么速度以什么速率变化?——换句话说,加速度是多少?它的方向又是什么?
向心力和向心加速度
我们都知道力的方向是实际经验的结果。在一根绳子的末端摇摆一块石头时,绳子以什么方向拉石头以保持其在圆形路径上?当然是朝向圆心,由于力和加速度方向相同,加速度也必须朝向圆心。
我们也知道,石头的速度越大,它行进的圆的半径越小,绳子中的拉力就越大,因此加速度也越大。加速度实际上由简单公式 v 2 / r v^{2}/r v2/r给出,其中 v v v是物体的速度, r r r是圆的半径。
朝向中心的力被称为向心力(寻找中心的力),它等于物体的质量 × \times ×向心加速度,即 m × v 2 / r m \times v^{2}/r m×v2/r(图1.4)
v = 6.28 m / s , r = 1 m v=6.28 \mathrm{m}/\mathrm{s}, r=1 m v=6.28m/s,r=1m
∴ 向心加速度 = v 2 / r \therefore\text{向心加速度} =v^{2}/r ∴向心加速度=v2/r
= ( 6.28 × 6.28 ) / 1 =(6.28 \times 6.28)/1 =(6.28×6.28)/1
= 39.5 m / s 2 ( 约 ) =39.5 \mathrm{m}/\mathrm{s}^{2}(\text{约}) =39.5m/s2(约)

注意,这几乎是重力加速度的四倍,或者说接近 4 g 4g 4g。为了简化问题,我们假设答案是 4 g 4g 4g,即 39.24 m / s 2 39.24 \mathrm{m}/\mathrm{s}^{2} 39.24m/s2。
这意味着石头朝向中心的速度变化率是下落物体的4倍。然而,它从未靠近中心!是的,但如果石头没有系在绳子上会发生什么?它会遵循直线前进的趋势,这样会使它越来越远离中心。
产生这种4g加速度需要多大的向心力?石头的质量 × 4 g \times 4g ×4g。
所以,如果石头质量为 1 / 2 k g 1/2kg 1/2kg,向心力将是 1 / 2 × 4 g = 2 × 9.81 1/2 \times 4g=2 \times 9.81 1/2×4g=2×9.81 = 19.6 =19.6 =19.6,约20牛顿。
因此,绳子中的拉力为 20 N 20N 20N,以便给 1 / 2 k g 1/2kg 1/2kg的质量提供 4 g 4g 4g的加速度。
注意,力是20牛顿,加速度是 4 g 4g 4g。人们常常错误地把 ′ g ′ 'g' ′g′当作力来讨论;它不是力,它是加速度。
现在,只要向心力是作用于石头质量的唯一力,这一切都很容易理解。然而,实际上必然有重力作用于它。
如果石头在水平圆周上旋转,它的重量将与绳子中的拉力垂直,因此不会影响向心力。但当然,石头不可能在水平圆周上旋转,同时绳子也是水平的,除非有东西支撑它。所以让我们想象质量在桌子上——但它必须是一个光滑、无摩擦的桌子,否则我们将引入更多的力。我们现在有了图1.5所示的简单情况。

现在假设我们让石头在垂直圆周上旋转,就像飞机做环状飞行一样,情况就有所不同了(图1.6)。即使石头不旋转,只是挂在绳子末端,绳子中也会有张力,这是由于它的重量,这个张力大约是5牛顿(对于 1 / 2 k g 1/2kg 1/2kg的质量来说)。如果它必须以 4 g 4g 4g的加速度旋转,绳子还必须提供20牛顿的向心力。所以当石头在圆周的底部D时,绳子中的总拉力将是 25 N 25N 25N。当石头在顶部位置C时,它自身的重量将朝向中心作用,这将提供 5 N 5N 5N,所以绳子只需额外拉 15 N 15N 15N就能产生 4 g 4g 4g加速度所需的 20 N 20N 20N总力。在侧面位置A和B,石头的重量与绳子垂直作用,绳子中的拉力将是 20 N 20N 20N。

总结一下:绳子中的拉力在 15 N 15N 15N和 25 N 25N 25N之间变化,但加速度始终是 4 g 4g 4g,当然,向心力始终是 20 N 20N 20N。从实际角度看,最重要的是绳子中的拉力,显然当石头在位置D且张力达到最大值 25 N 25N 25N时,绳子最有可能断裂。
让我们稍微复杂化问题,假设石头在水平圆周上旋转,但依靠绳子的拉力来支撑它(图1.7),并且绳子已经延长,使石头旋转的半径仍然是1米。绳子当然不能是水平的,因为它的拉力必须同时完成两件事——支撑石头的重量并提供向心力。
在这里我们必须引入一个新原理。
需要 5 N 5N 5N的垂直力来支撑重量。
需要 20 N 20N 20N的水平力来提供向心力。
现在五加二十并不总是等于二十五!在这个例子中不是,原因很简单,它们不是朝同一方向拉。因此,我们必须用向量表示它们(图1.7),对角线将表示总力,根据勾股定理,将是
( 2 0 2 + 5 2 ) = 425 = 20.6 N \sqrt{(20^{2}+5^{2})}=\sqrt{425}=20.6 \mathrm{N} (202+52)=425=20.6N
绳子与垂直方向的角度的正切是 20 / 5 = 4.0 20/5=4.0 20/5=4.0。角度约为 7 6 ∘ 76^{\circ} 76∘。用符号表示角度θ:
tan
θ
=
向心力
重量
=
(
m
×
v
2
/
r
)
/
W
\tan \theta =\frac {\text {向心力}}{\text {重量}}=\left(m \times v^{2}/r\right)/W
tanθ=重量向心力=(m×v2/r)/W
=
(
m
×
v
2
/
r
)
/
m
g
=\left(m \times v^{2}/r\right)/mg
=(m×v2/r)/mg

(mg是以牛顿表示的重量)
= v 2 / r g =v^{2}/rg =v2/rg
这个角度θ代表任何车辆,无论是自行车、汽车还是飞机,以速度 v v v米/秒转弯半径为 r r r米的弯道时的正确倾斜角,如果要避免向内滑动或向外侧滑的趋势。
离心力
到目前为止,我们尚未提及"离心力"这一术语。这很奇怪,因为离心力是日常生活中常用的词汇,而向心力除了力学专业的学生外几乎鲜为人知。
让我们再次思考在桌面上水平圆周运动的石头。我们已经确定,绳子对石头施加了一个向内的力,目的是提供朝向圆心的加速度——是的,向心力虽然不为人所熟知,但确实是一种真实的、实际的、物理的力。那么,是否也存在一个向外的力呢?
这种情况类似于我们前面描述的加速飞机拖曳滑翔机的例子。绳子外端存在一个向外的反作用力,这是因为它向内加速石头:这是一种惯性力,我们可以称之为离心反作用力。这使绳子处于张力平衡状态,就像它被固定在墙上并被拉扯一样。然而,请注意,石头本身并没有受到向外的力,只有绳子施加的向内力来产生向心加速度。与前面描述并在图1.2中展示的加速滑翔机一样,绳子两端的力是平衡的,但作用在物体(石头或滑翔机)上的力并不平衡,因此产生了加速度。
惯性力的概念确实不易理解。在水平旋转石头的自由体图中,唯一施加的水平外力是绳子提供的向内力。这个力产生了必要的加速度。系统内部组件(如绳子)上可能存在向外的力,但整个系统上并不存在。值得注意的是,如果你松开绳子,石头不会向外飞出,而是沿切线方向飞离。
总结曲线路径上的运动:存在一个朝向圆心的加速度( v 2 / r v^{2}/r v2/r),需要 m v 2 / r mv^{2}/r mv2/r的向心力。
在这个阶段,建议读者尝试解答附录3中关于曲线路径运动的一些数值问题。
飞行力学
理解力学原理——特别是重力、加速运动、向心力和离心力以及曲线路径运动的意义和含义——将有助于我们理解飞机的运动和机动。这些知识还将帮助我们理解卫星和航天器的运动规律。
功、功率和能量
这三个术语在力学中经常使用,因此我们必须理解它们的确切含义。这尤为重要,因为它们在日常对话中也是常用词,但含义略有不同。
当力使物体沿其作用方向移动时,我们说力对物体做功,所做功的量由力与物体在力的方向上移动的距离的乘积来衡量。因此,如果10牛顿的力使物体移动2米(沿其作用线),它做了20牛顿米(Nm)的功。牛顿米,即功的单位,被称为焦耳(J)。需要注意的是,根据力学定义,如果你推动某物但没有成功移动它,你实际上没有做任何功——无论你推得多用力或推了多长时间。同样,如果物体朝相反方向移动,甚至与你推的方向垂直,你也没有做功。这种情况下,一定是其他力在起作用——并做了一些功!
功率仅仅是做功的速率。如果10 N的力在5秒内使物体移动2米,那么功率是5秒内20 Nm(20焦耳),即每秒4焦耳。每秒焦耳(J/s)被称为瓦特(W),是功率的单位。所以这个例子中使用的功率是4瓦特。学习过电学的读者已经熟悉瓦特作为电功率的单位;这只是所有科学分支相互关联的普遍趋势的一个例证。注意做功所需时间的重要性,即做功的速率;"功率"或"强大"这个词,容易给人一种大小和蛮力的印象。1瓦特的单位对于实际应用来说太小,通常使用千瓦。马力这个传统单位虽然不够精确,但作为一个有趣的参考,它相当于745.7瓦特(图1B)。
如果物体具有做功的能力,我们说它拥有能量,能量的大小由它能做的功的量来计算。因此,能量的单位与功的单位相同。我们知道汽油可以通过驱动汽车或飞机做功,人可以通过推动自行车甚至步行做功,化学电池可以驱动电动机,电动机可以对火车做功,爆炸物可以以高速从枪口驱动炮弹。这一切表明能量可以以多种形式存在,包括热、光、声、电、化学、磁、原子能——以及最实用的机械能。稍加思考就会让我们意识到,我们花了多少时间和精力来转换,或试图将其他形式的能量转换为机械能,这是最终使我们能够到达目的地的能量形式。人体本质上是一种特殊的发动机,其中食物中包含的能量被转换为有用或无用的功。遗憾的是,能量往往会退化为其他形式,我们产生机械能的努力并不总是很高效。
即使是机械能也可以以多种形式存在;高处的重物在下降时可以做功,我们说它具有势能或位置能;快速移动的物体在停止时可以做功,因此被认为具有动能或运动能;被上紧的弹簧、被压缩的气体,甚至被拉伸的弹性材料,都可以在恢复原状时做功,都具有某种形式的潜在能量,根据其应用被赋予不同的名称。
用数字表示,50牛顿的重物被抬高到比其基座高2米的位置,具有100焦耳的势能,或者更准确地说,它比在基座位置时多了100焦耳的势能。这是将其抬到新位置所做的功,也是它在返回基座时理论上能够做的功。
用符号表示,W牛顿在高度 b b b米处有:
Wb焦耳的能量。
质量为 m m m千克、以 v v v米/秒移动的物体的动能是多少?
当然,我们不知道它是如何获得动能的,但实际过程并不重要,所以让我们假设它是由一个恒定的F牛顿力推动,从零速度均匀加速到 v v v米/秒,加速度为每秒每秒a米。
如果加速过程中行进的距离是 s s s米,那么所做的功,即它的动能,将是 F s Fs Fs焦耳。
但 v 2 = u 2 + 2 a s (且 u = 0 ) \text{但 }v^{2}=u^{2}+2as\text{(且 } u=0) 但 v2=u2+2as(且 u=0)
∴ v 2 = 2 a s \therefore v^{2}=2as ∴v2=2as
∴ s = v 2 / 2 a \therefore s=v^{2}/2a ∴s=v2/2a
但 F = m a \text{但 }F=ma 但 F=ma
所以动能 = F s = m a × v 2 / 2 a = 1 2 m v 2 焦耳。 \text{所以动能}=Fs=ma \times v^{2}/2a=\frac{1}{2}mv^{2} \text{ 焦耳。} 所以动能=Fs=ma×v2/2a=21mv2 焦耳。
因此,以 10 m / s 10m/s 10m/s移动的 2 k g 2kg 2kg质量的动能
=
1
2
m
v
2
=\frac{1}{2}mv^{2}
=21mv2
=
1
2
×
2
×
1
0
2
=\frac{1}{2} \times 2 \times 10^{2}
=21×2×102
=
100
J
=100J
=100J

洛克希德C-5银河运输机配备四台涡扇发动机,每台推力为 183 k N 183kN 183kN,在约 900 k m / h 900km/h 900km/h的最大水平速度下代表总功率为 183000 k W 183000kW 183000kW。
能量和动量
让我们确保理解能量和动量之间的区别,因为我们稍后会涉及这个问题。
能量是 1 / 2 m v 2 1/2\mathrm{mv}^{2} 1/2mv2。动量是mv。
所以,以 10 m / s 10m/s 10m/s移动的 2 k g 2kg 2kg质量,有100单位的能量(焦耳),但有 2 × 10 2 \times 10 2×10,即20单位的动量 ( k g × m / s ) (\mathrm{kg} \times \mathrm{m}/\mathrm{s}) (kg×m/s)。
是的,但这不仅仅如此。
考虑两个物体碰撞,例如台球。
碰撞后的总动量与碰撞前的总动量相同;一个球失去的动量正好等于另一个球获得的动量。这是动量守恒原理。(在考虑这一点时,必须记住动量有方向,因为速度有方向。)无论球是反弹,还是粘在一起,或者无论它们做什么,这个定律都适用。
但碰撞后的总机械能不会与之前相同;能量将被耗散,它将以热、声等形式进入空气;宇宙的总能量不会因碰撞而改变——但球的能量会改变。
所以动量是比能量更永久的属性,后者经常被浪费,我们有时会发现,为了给物体动量,我们也必须给它能量,这是不幸的。
流体压力
在飞行力学中,我们主要关注流体压力,即液体或气体中的压力,以及它产生的力。流体之所以施加力,是因为其分子在快速运动,并轰击放置在流体中的任何表面;每个分子对表面只施加微小的力,但数百万分子轰击的综合效果导致表面上均匀分布的力。
压力是标量。这意味着它有大小,但与向量不同,不涉及方向。当静止的流体与表面接触时,压力产生的力垂直于表面作用(图1.8)。注意,力确实有方向,而产生它的压力没有。人们在谈论压力时经常混淆因果关系,这并不奇怪。你会发现许多旧书说压力在所有方向上均等作用。事实并非如此。压力不朝任何方向作用;是由压力引起的力朝某个方向作用。力的方向总是垂直于压力所接触的表面。我们根据压力在面积上产生的力来测量压力,所以压力的单位是牛顿每平方米(N/㎡)。
1 N/㎡的压力也被称为帕斯卡(Pa)。另一个常见的公制压力单位是毫巴(mb),它是巴的1/1000:一巴是105N/㎡。这个看似奇怪的单位之所以出现,是因为1巴非常接近海平面的标准大气压。它在公制SI单位引入前多年就被气象学家采用,读者可能经常遇到以毫巴表示的大气压,特别是在飞行手册中。在本书中,当涉及高度影响等问题时,我们将使用毫巴表示大气压。然而,对于大多数直接的空气动力学计算,我们将使用N/㎡,因为这是欧洲教育机构的正常做法。
密度
密度定义为物质单位体积的质量,在SI公制系统中其单位为kg/m³。需要注意的是,这个定义使用的是质量而非重量。密度通常用希腊字母ρ表示。
正如我们后文将会看到的,空气密度会随着高度和气象条件而变化。而水的密度则非常方便地保持在1000kg/m³,即使在很高压力下也几乎不变。

静止流体中的压力和密度变化
静止流体中的压力随深度增加而增加。对于空气而言,这种变化相当复杂,因为密度也随深度增加而增加。这些变化对飞机飞行至关重要,下一章将详细描述压力、密度和温度随高度的变化规律。
在液体中,情况则简单得多;密度几乎保持恒定,压力变化与深度变化成正比。液体中的压力变化可由以下简单表达式给出:
压力变化 = 密度 × 重力常数 × 深度变化
或: Δ p = ρ × g × ( 深度变化 ) \Delta p=ρ \times g \times (\text{深度变化}) Δp=ρ×g×(深度变化)
你可能会疑惑,在一本关于飞机飞行力学的书中,为什么我们要关注液体中压力变化的规律。这是因为测量压力最简单的方法是使用含有液体的U形管,即所谓的U形管压力计,这将在下一章中详细介绍。
气体的行为
在研究飞机飞行时,我们实际上只关注一种特定气体——空气的行为。我们需要了解的最重要关系是气体定律,可表示为:
p ρ = R T \frac{p}{ρ}=RT ρp=RT
其中 p p p是压力, ρ ρ ρ是密度, T T T是相对于绝对零度测量的温度(即在SI系统中的开尔文度), R R R是一个称为气体常数的常量。
当气体被压缩时,其密度增加,因此温度或压力(或两者)必然会发生变化。它们如何变化取决于压缩的进行方式。如果压缩非常缓慢,且气体容器隔热性能差,使热量能够传出系统,那么温度将保持恒定,压力变化将与密度变化成正比。这被称为等温过程,涉及从气体到其周围环境的热传递。在这种情况下,压力和密度之间的关系由以下公式给出:
p ρ = 常数 \frac{p}{ρ}=\mathrm{常数} ρp=常数
如果压缩在没有热传递的情况下进行(通常发生在压缩过程非常快速时),那么这种变化被称为绝热过程。若变化还在没有增加湍流的情况下进行,因此系统的无序度(熵)没有增加,那么这个过程被称为等熵过程,此时压力和密度之间的关系由以下公式给出:
p ρ γ = 常数 \frac{p}{ρ^{γ}}=\mathrm{常数} ργp=常数
其中 γ γ γ是定压比热与定容比热的比值,对于空气约为1.4。
若不深入热力学的复杂性,我们无法在这方面进一步探讨。不过,由于上述关系是理解本书内容所需的唯一关系,我们不会对这个主题做更多讨论。
力、速度等的合成和分解
力是矢量量——它有大小和方向,可以用一条直线表示,通过力施加的点,其长度表示力的大小,其方向对应于力作用的方向。力可以通过绘制表示它们的向量来相加或相减,形成合力,或者可以被分解,即分成分量部分(图1.9)。



注意,速度和动量也是矢量量,可以用同样的方式用直线表示。另一方面,质量不是;质量没有方向,这是力和质量之间的又一区别。
力的三角形、平行四边形和多边形
如果作用于一点的三个力处于平衡状态,它们可以由按顺序取的三角形的边表示(图1.10)。这被称为力的三角形原理,所谓的力的平行四边形实际上是同一回事,平行四边形的两边和对角线对应于三角形。
如果有超过三个力,则使用力的多边形原理——当作用于一点的任意数量的力处于平衡状态时,由表示这些力的向量按顺序形成的多边形将形成一个闭合图形,或者相反,如果多边形是闭合图形,则力处于平衡状态。
力矩、力偶和力矩原理
力关于任何点的力矩是力与从该点到力作用线的垂直距离的乘积。
因此, 10 N 10N 10N力关于其作用线最短距离为 3 m 3m 3m的点(图1.11)的力矩是 10 × 3 = 30 10 \times 3 = 30 10×3=30 N − m N-m N−m。注意,虽然两者都以力 × \times ×距离来测量,但力矩(单位 N − m N-m N−m)和力所做的功(单位 N m Nm Nm或焦耳)之间有一个微妙但重要的区别。
力矩中的距离仅仅是杠杆作用,不涉及运动;力矩不能以焦耳为单位测量。



如果力矩是顺时针方向,通常被视为正值;如果是逆时针方向,则视为负值。
当物体在同一平面内受到多个力的作用而处于平衡状态时,关于任意点的顺时针力矩总和等于逆时针力矩总和,或者更简洁地说,总力矩为零。这就是力矩原理,它适用于所有情况,无论力是否平行。
在分析作用于物体的力时,物体自身的重量通常是最需要考虑的重要力之一。无论物体处于何种位置,其重量都可视为通过重心作用,重心定义为合力重量通过的点。
两个大小相等、方向相反的平行力被称为力偶。力偶的力矩等于其中一个力的大小乘以两力之间的距离,即力偶的臂长。值得注意的是,力偶关于任何点的力矩都相同(如图1.12所示),且力偶没有合力。
关于O点的力矩:P力为 10 × 1 = 10(顺时针),Q力为 10 × 1 = 10(顺时针)
总计:20(顺时针)
关于A点的力矩:P力为零,Q力为 10 × 2 = 20(顺时针)
总计:20(顺时针)
关于B点的力矩:P力 为10 × 2 = 20(顺时针),Q力为零
总计:20(顺时针)
关于C点的力矩:P力为 10 × 6 = 60(顺时针),Q力为 10 × 4 = 40(逆时针)
总计:20(顺时针)

飞行力学
我们并不自诉已经涵盖了力学的所有原理,甚至也没有完全解释已经涉及的那些原理。我们所做的只是选择了一些在理解飞机如何飞行方面似乎构成主要障碍的主题;我们试图消除这些障碍,甚至可能将它们重新安排,使它们成为通往本学科其余部分的垫脚石。在下一章中,我们将转向我们真正的主题——飞行力学。
在继续之前,请尝试回答下面的一些问题,以及附录3中的数值问题。
你能回答这些问题吗?
这些问题与其说是测试力学知识,不如说是测试力学感觉。试着思考它们。有些简单,有些困难;答案在附录5中给出。
-
电梯正在下降,并在一楼停止。加速度的方向是什么?
-
以下各项之间有什么区别:
(a) 压力和力?
(b) 力矩和动量?
© 能量和功?
-
为什么沿斜面拉动物体所需的力比垂直提升它小?在每种情况下做的功是否相同?
-
区分物体的质量和重量。
-
如果在直线水平飞行中飞机的阻力等于螺旋桨的推力,是什么使飞机向前飞行?
-
起飞过程中推力是否大于阻力?
-
物体的重心可以在物体本身之外吗?
-
飞机在以下情况下是否处于平衡状态:
(a) 稳定爬升?
(b) 起飞?
-
以下各项在月球表面与在地球表面相比是相同、更小还是更大:
(a) 用弹簧秤测量的给定物体的重量?
(b) 用地磅(使用标准砝码组)测量的给定物体的表观重量?
© 物体从100米高处下落的时间?
(d) 同一钟摆的摆动时间?
(e) 火箭提供的推力?
-
在拔河比赛中,获胜队对绳子施加的力是否比失败队大?
-
以下情况是否处于平衡状态 -
(a) 放在桌子上的书?
(b) 以稳定速度上坡的火车?
-
一面旗帜飘扬在安装在大气球顶部的垂直旗杆上。如果气球在强劲但稳定的东风中飞行,旗帜将指向哪个方向?
答案见附录5。
有关力学的数值例题,请参见附录3。