常用回归模型评估指标

本文总结了各个评估指标的优缺点及其相互关系。

MAE(Mean Absolute Error)

顾名思义,即“绝对误差的均值”:

使用 MAE 指标的优点是,计算出的误差指标的量纲与目标变量一致,并且对离群值不敏感。缺点则是由于其函数不可微,不能作为损失函数,因此在不能作为优化器。如果需要最小化 MAE 来拟合回归模型,需要引入其他优化器,如梯度下降。

MSE(Mean Squared Error)

顾名思义,即“平方误差的均值”,在这里顺便了解一下 SSE 的概念:

其优点是,函数可微,可以作为损失函数。实际上最小二乘回归就相当于使用了这个损失函数(最小二乘法通过最小化 SSE 拟合模型)。其缺点是,误差指标的单位变成原始数据单位的平方,并且对异常值敏感。

RMSE(Root Mean Squared Error)

没啥好说,就是上面提到的单位问题,于是就将 MSE 开平方了。

RMSLE(Root Mean Squared Log Error)

RMSE 存在的问题是,对偏小的预测值惩罚较大,也就是对于不同的误差惩罚不是线性的,因此再取对数,来减小这个问题的影响(实际上没有解决问题)。

R2(R Squared)

R2 又称为拟合优度或确定系数,前面 MSE 已经提到 SSE,这里顺便再提一下 SSR 和 SST:

可以理解为:SSR 为回归方差,SST 为总方差。在统计学中,变异量(即方差)体现了一个随机变量的解释性。因此 R2 的大小体现了预测值对数据变异的解释占总变异的比例,亦即回归模型的好坏。

那么按照这个说法,没有被解释到的去哪里了呢?就在误差 SSE 里面了:

在这里插入图片描述

Adjusted R2

R2 的缺点是,它只会升不会降。也就是说,你可以在模型中不断添加新的特征,来提高拟合优度(至少不会降低),即使这些新特征是线性不相关的。因此使用 R2 来对比两个具有不同特征数量的模型是不准确的,只试用于单个模型的拟合优度。针对 R2 的这个问题,通过以下式子引入样本量和自由度来进行调整:

其中 n 为样本数,k 为独立变量个数。

阅读原文

### 回归模型常用评估指标 #### 均方误差 (MSE) 均方误差(Mean Square Error, MSE)是衡量回归模型性能的重要指标之一。该指标通过计算实际值与预测值之间差异的平方并取其平均值得到,能够有效放大较大误差的影响。 \[ \text{MSE} = \frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2 \] 其中 \( y_i \) 表示第 i 个样本的真实标签,\( \hat{y}_i \) 则表示对应的预测结果[^2]。 ```python from sklearn.metrics import mean_squared_error mse_value = mean_squared_error(y_true, y_pred) print(f'Mean Squared Error: {mse_value}') ``` #### 平均绝对误差 (MAE) 平均绝对误差(Mean Absolute Error, MAE),定义为观测值和预测值之差的绝对值的算术平均数。相比 MSE 而言,MAE 对异常点更加鲁棒,因为不涉及平方操作从而不会过分强调大错误项。 \[ \text{MAE} = \frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i| \] ```python from sklearn.metrics import mean_absolute_error mae_value = mean_absolute_error(y_true, y_pred) print(f'Mean Absolute Error: {mae_value}') ``` #### 决定系数 (R² 或 R-Squared) 决定系数反映了因变量 Y 的变异能被自变量 X 解释的比例大小;换句话说就是指所建立的统计模型对于观测数据的拟合程度的好坏。理想的 R² 应尽可能接近于 1,表明模型具有良好的解释力。 \[ R^2 = 1 - \frac{\sum{(y_i-\hat{y}_i)^2}}{\sum{(y_i-\bar{y})^2}} \] 这里 \( \bar{y} \) 是所有目标变量的实际平均值。 ```python from sklearn.metrics import r2_score r2_value = r2_score(y_true, y_pred) print(f'R-squared Score: {r2_value}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值