F1分数(F1 Score),是统计学中用来衡量二分类模型精确度的一种指标。它同时兼顾了分类模型的准确率和召回率。F1分数可以看作是模型准确率和召回率的一种加权平均,它的最大值是1,最小值是0.
数学定义








人们通常使用准确率和召回率这两个指标,来评价二分类模型的分析效果。
但是当这两个指标发生冲突时,我们很难在模型之间进行比较。比如,我们有如下两个模型A、B,A模型的召回率高于B模型,但是B模型的准确率高于A模型,A和B这两个模型的综合性能,哪一个更优呢?
准确率 | 召回率 | |
A | 80% | 90% |
B | 90% | 80% |
为了解决这个问题,人们提出了
分数。






F分数被广泛应用在
信息检索领域,用来衡量检索分类和文档分类的性能。早期人们只关注
分数,但是随着谷歌、百度等大型搜索引擎的兴起,召回率和准确率对性能影响的权重开始变得不同,人们开始更关注其中的一种,所以
分数得到越来越广泛的应用。


F分数也被广泛应用在自然语言处理领域,比如命名实体识别、分词等,用来衡量算法或系统的性能。
